The classical KMS condition for Hamiltonian PDEs

Zied Ammari

IRMAR University of Rennes

ANR-DFG Kick-Off Meeting

Ř

Outline:

Bose-Hubbard model on (finite) graphs

Dynamical mean field limit Variational mean field limit

Equilibrium states

Gibbs states, Gibbs measures High temperature regime

High temperature limit for Bose-Hubbard

KMS states, KMS measures Convergence result

KMS condition for Hamiltonian PDEs

Hamiltonian PDEs Gaussian measures: infinite dimension Results and conjectures

The discrete Laplacian

- ▶ A finite graph $\mathcal{G} = (V, \mathcal{E})$ where V is the set of vertices and \mathcal{E} is the set of edges.
- ► Assume that *G* is a simple undirected graph.
- The degree of each vertex $x \in V$ is denoted by deg(x).
- \blacktriangleright We denote the graph by \mathcal{G} or V.

The Hilbert space of all complex-valued functions on V denoted as $\ell^2(\mathcal{G})$ and endowed with its natural scalar product and with the orthonormal basis $(e_x)_{x \in V}$ such that

$$e_x(y) := \delta_{x,y}, \quad \forall x, y \in V.$$

Definition

The discrete Laplacian on the graph ${\cal G}$ is a non-positive bounded operator on $\ell^2\left({\cal G}
ight)$ given by,

$$\left(\Delta_{\mathcal{G}} \psi
ight)(x) := - deg(x) \psi(x) + \sum_{y \in V, y \sim x} \psi(y),$$

with the above sum running over the nearest neighbors of x and ψ is any function in $\ell^2(\mathcal{G}).$

The discrete Laplacian

- ▶ A finite graph $\mathcal{G} = (V, \mathcal{E})$ where V is the set of vertices and \mathcal{E} is the set of edges.
- ► Assume that *G* is a simple undirected graph.
- The degree of each vertex $x \in V$ is denoted by deg(x).
- We denote the graph by \mathcal{G} or V.

The Hilbert space of all complex-valued functions on V denoted as $\ell^2(\mathcal{G})$ and endowed with its natural scalar product and with the orthonormal basis $(e_x)_{x \in V}$ such that

$$e_x(y) := \delta_{x,y}, \quad \forall x, y \in V.$$

Definition

The discrete Laplacian on the graph ${\cal G}$ is a non-positive bounded operator on $\ell^2\left({\cal G}
ight)$ given by,

$$\left(\Delta_{\mathcal{G}} \psi
ight) (x) := - ext{deg}(x) \psi(x) + \sum_{y \in V, y \sim x} \psi(y),$$

with the above sum running over the nearest neighbors of x and ψ is any function in $\ell^2(\mathcal{G}).$

The discrete Laplacian

- ▶ A finite graph $\mathcal{G} = (V, \mathcal{E})$ where V is the set of vertices and \mathcal{E} is the set of edges.
- ► Assume that *G* is a simple undirected graph.
- The degree of each vertex $x \in V$ is denoted by deg(x).
- We denote the graph by \mathcal{G} or V.

The Hilbert space of all complex-valued functions on V denoted as $\ell^2(\mathcal{G})$ and endowed with its natural scalar product and with the orthonormal basis $(e_x)_{x \in V}$ such that

$$e_x(y) := \delta_{x,y}, \quad \forall x, y \in V.$$

Definition

The discrete Laplacian on the graph \mathcal{G} is a non-positive bounded operator on $\ell^2(\mathcal{G})$ given by,

$$\left(\Delta_{\mathcal{G}} \psi
ight) (x) := - ext{deg}(x) \psi(x) + \sum_{y \in V, y \sim x} \psi(y),$$

with the above sum running over the nearest neighbors of x and ψ is any function in $\ell^2(\mathcal{G})$.

Fock space and CCR's relations

Consider the bosonic Fock space,

$$\mathfrak{F}=\mathbb{C}\oplus igoplus_{n=1}^{\infty}\otimes_{s}^{n}\ell^{2}\left(\mathcal{G}
ight)\,,$$

where ⊗ⁿ_sℓ² (G) denotes the symmetric *n*-fold tensor product of ℓ² (G).
 Introduce the usual creation and annihilation operators acting on the bosonic Fock space,

$$a_x = a(e_x)$$
 and $a_x^* = a^*(e_x)$,

then the following canonical commutation relations are satisfied,

$$ig[a_x,a_y^*ig]=\,\delta_{x,y}\,1_{{\mathfrak F}}$$
 and $ig[a_x^*,a_y^*ig]=[a_x,a_y]=0,\quad orall x,y\in V\,.$

Fock space and CCR's relations

Consider the bosonic Fock space,

$$\mathfrak{F}=\mathbb{C}\oplus igoplus_{n=1}^{\infty}\otimes_{s}^{n}\ell^{2}\left(\mathcal{G}
ight)\,,$$

where $\otimes_{s}^{n} \ell^{2}(\mathcal{G})$ denotes the symmetric *n*-fold tensor product of $\ell^{2}(\mathcal{G})$.

Introduce the usual creation and annihilation operators acting on the bosonic Fock space,

$$a_{\scriptscriptstyle X} = a(e_{\scriptscriptstyle X})$$
 and $a_{\scriptscriptstyle X}^* = a^*(e_{\scriptscriptstyle X})\,,$

then the following canonical commutation relations are satisfied,

$$ig[a_x,a_y^*ig]=\,\delta_{x,y}\,\mathbf{1}_{\mathfrak{F}}$$
 and $ig[a_x^*,a_y^*ig]=ig[a_x,a_yig]=\mathsf{0},\quad orall x,y\in V\,.$

The Bose-Hubbard Hamiltonian

Definition (Bose-Hubbard Hamiltonian)

For $\varepsilon \in (0, \overline{\varepsilon})$, $\lambda > 0$ and $\kappa < 0$, define the ε -dependent Bose-Hubbard Hamiltonian on the bosonic Fock space \mathfrak{F} by

$$\mathcal{H}^{\scriptscriptstyle\mathsf{BH}}_arepsilon := rac{arepsilon}{2} \sum_{x,y \in V: y \sim x} (a^*_x - a^*_y) (a_x - a_y) + \ rac{arepsilon^2 \lambda}{2} \sum_{x \in V} a^*_x a^*_x a_x a_x - arepsilon \kappa \sum_{x \in V} a^*_x a_x.$$

Here λ is the on-site interaction, κ is the chemical potential and ε is the semiclassical parameter.

Remark

The first term of the Hamiltonian $H_{\varepsilon}^{\text{BH}}$ is the kinetic part of the system and corresponds to the second quantization of the discrete Laplacian. Indeed, one can write

$$\frac{1}{2}\sum_{x,y\in V:y\sim x}(a_x^*-a_y^*)(a_x-a_y)=\sum_{x\in V}\deg(x)\,a_x^*a_x-\sum_{x,y\in V,y\sim x}a_x^*a_y=\mathrm{d}\Gamma(-\Delta_{\mathcal{G}})\,.$$

The Bose-Hubbard Hamiltonian

Definition (Bose-Hubbard Hamiltonian)

For $\varepsilon \in (0, \overline{\varepsilon})$, $\lambda > 0$ and $\kappa < 0$, define the ε -dependent Bose-Hubbard Hamiltonian on the bosonic Fock space \mathfrak{F} by

$$\mathcal{H}^{\scriptscriptstyle \mathsf{BH}}_arepsilon := rac{arepsilon}{2} \sum_{x,y \in V: y \sim x} (a_x^* - a_y^*) (a_x - a_y) + \ rac{arepsilon^2 \lambda}{2} \sum_{x \in V} a_x^* a_x^* a_x a_x - arepsilon \kappa \sum_{x \in V} a_x^* a_x a_x.$$

Here λ is the on-site interaction, κ is the chemical potential and ε is the semiclassical parameter.

Remark

The first term of the Hamiltonian $H_{\varepsilon}^{\text{BH}}$ is the kinetic part of the system and corresponds to the second quantization of the discrete Laplacian. Indeed, one can write

$$\frac{1}{2}\sum_{x,y\in V: y\sim x}(a_x^*-a_y^*)(a_x-a_y)=\sum_{x\in V}deg(x)\,a_x^*a_x-\sum_{x,y\in V, y\sim x}a_x^*a_y=\mathrm{d}\Gamma(-\Delta_{\mathcal{G}})\,.$$

Dynamical mean field limit

For N number of particles, define the many-body Hamiltonian H_N :

$$H_N \equiv \varepsilon^{-1} H_{\varepsilon}^{\text{BH}} \big|_{\otimes_s^N \ell^2(\mathcal{G})} \quad \text{with } \varepsilon = N^{-1}$$

(Mean-field regime for H_N) $N \to \infty \equiv \varepsilon \to 0$ (Semiclassical regime for H_{ε}^{BH})

Theorem (PhD C. Rouffort)

The mean-field regime of the Bose-Hubbard Hamiltonian is governed by the Discrete nonlinear Schrödinger equation (DNLS) given by

$$\begin{cases} i\partial_t u_n(t) &= -\left((\Delta_{\mathcal{G}} + \kappa)u(t)\right)_n + \frac{\lambda}{2}|u_n(t)|^2 u_n(t), \quad \forall n \in V \\ u(t=0) &= u(0) \in \ell^2(\mathcal{G}) \end{cases}$$

$$(1)$$

Mean-field propagation:

Factorized states

Wigner measures

Dynamical mean field limit

For N number of particles, define the many-body Hamiltonian H_N :

$$H_N \equiv \varepsilon^{-1} H_{\varepsilon}^{\text{BH}} \big|_{\otimes_s^N \ell^2(\mathcal{G})} \quad \text{with } \varepsilon = N^{-1}$$

(Mean-field regime for H_N) $N \to \infty \equiv \varepsilon \to 0$ (Semiclassical regime for H_{ε}^{BH})

Theorem (PhD C. Rouffort)

The mean-field regime of the Bose-Hubbard Hamiltonian is governed by the Discrete nonlinear Schrödinger equation (DNLS) given by

$$\begin{cases} i\partial_t u_n(t) &= -\left((\Delta_{\mathcal{G}} + \kappa)u(t)\right)_n + \frac{\lambda}{2}|u_n(t)|^2 u_n(t), \quad \forall n \in V \\ u(t=0) &= u(0) \in \ell^2(\mathcal{G}) \end{cases}$$

$$(1)$$

Mean-field propagation:

- Coherent states
- Factorized states
- Wigner measures

Variational mean field limit

Ground state energy:

$$E_{N} := \inf_{\|\psi^{N}\|_{\otimes_{s}^{N}\ell^{2}(\mathcal{G})}=1} \langle \psi^{N}, H_{N}\psi^{N} \rangle_{\mathfrak{F}} = \frac{1}{N} \inf_{\|\psi^{N}\|_{\otimes_{s}^{N}\ell^{2}(\mathcal{G})}=1} \langle \psi^{N}, H_{N^{-1}}^{\mathsf{BH}}\psi^{N} \rangle_{\mathfrak{F}}.$$

The DNLS Hamiltonian energy:

$$h(u) = -\langle u, (\Delta_{\mathcal{G}} + \kappa)u \rangle_{\ell^{2}(\mathcal{G})} + \frac{\lambda}{4} \sum_{n \in V} |u_{n}|^{4}.$$
(2)

Theorem (PhD Q. Liard)

In the mean field regime the ground state energy of H_N is well described by the lowest level energy of the Discrete nonlinear Schrödinger equation (DNLS):

$$\lim_{N\to\infty} E_N = \inf_{\|u\|_{\ell^2(\mathcal{G})}=1} h(u) < \infty,$$

where
$$H_N \equiv \varepsilon^{-1} H_{\varepsilon}^{\mathsf{BH}} |_{\otimes_s^N \ell^2(\mathcal{G})}$$
 with $\varepsilon = N^{-1}$.

Bose-Hubbard at positive temperature

- So far the discussion on Bose-Hubbard was about the zero temperature.
- The Bose-Hubbard Hamiltonian defines a \mathscr{W}^* dynamical system (\mathfrak{M}, α_t) where \mathfrak{M} is the von Neumann algebra of all bounded operators $\mathscr{B}(\mathfrak{F})$ on the Fock space and α_t is the one parameter group of automorphisms defined by

$$\alpha_t(A) = e^{i\frac{t}{\varepsilon}H_{\varepsilon}^{\mathsf{BH}}} A e^{-i\frac{t}{\varepsilon}H_{\varepsilon}^{\mathsf{BH}}},$$

for any $A \in \mathfrak{M}$.

Question: Can we describe the equilibrium states of the Bose-Hubbard model at positive temperature in the semiclassical regime?

Bose-Hubbard equilibrium states

► Here we consider a finite graph.

Lemma (Partition function)

Since the chemical potential $\kappa < 0$ then

$$\operatorname{Tr}_{\mathfrak{F}}\left(e^{-\beta H_{\varepsilon}^{\mathsf{BH}}}
ight) < \infty.$$
 (3)

Definition (Gibbs equilibrium states)

The Gibbs equilibrium state of the Bose-Hubbard \mathscr{W}^* - dynamical system (\mathfrak{M}, α_t) at inverse temperature $\varepsilon\beta$ is well defined, according to (3), and it is given by

$$\omega_{\varepsilon}(A) = \frac{\operatorname{Tr}_{\mathfrak{F}}(e^{-\beta H_{\varepsilon}^{\mathsf{BH}}}A)}{\operatorname{Tr}_{\mathfrak{F}}(e^{-\beta H_{\varepsilon}^{\mathsf{BH}}})}.$$
(4)

DNLS Gibbs measures

Denote

$$E = \ell^2(\mathcal{G}) \equiv \mathbb{R}^{2d}.$$

For a negative chemical potential $\kappa < 0$,

$$z_{\beta} = \int_{E} e^{-\beta h(u)} \, dL < +\infty \,, \tag{5}$$

for all $\beta > 0$. Here *dL* is the Lebesgue measure on *E*.

Definition (DNLS Gibbs measure)

The equilibrium Gibbs measure of the DNLS Hamiltonian system (1) at inverse temperature $\beta > 0$, is the Borel probability measure given by

$$\mu_{\beta} = \frac{e^{-\beta h(\cdot)} dL}{\int_{E} e^{-\beta h(u)} dL} \equiv \frac{1}{z_{\beta}} e^{-\beta h(\cdot)} dL.$$
(6)

High temperature limit

The high temperature regime corresponds to

$$({\sf Temperature}) \quad {\cal T}_\varepsilon = \frac{1}{\beta_\varepsilon} \to \infty \quad \equiv \quad \beta_\varepsilon = \varepsilon\beta \to 0 \quad ({\sf Inverse \ temperature}) \, .$$

Hence

Hight temperature regime \equiv Semiclassical regime \equiv Mean field regime

Claim

In the high temperature limit the Bose-Hubbard Gibbs state ω_{ε} converges towards the DNLS Gibbs measure μ_{β} .

- Entropy and Berezin-Lieb inequality
- Dyson-Schwinger expansion
- Kubo-Martin-Schwinger (KMS) condition ?

Quantum KMS states

An element $A \in \mathfrak{M}$ is entire analytic if and only if for any t > 0 the sum below is convergent,

$$\sum_{n=0}^{\infty} \frac{t^n}{n!} \|S^n(A)\| < \infty, \quad \text{where} \quad S(\cdot) = \frac{i}{\varepsilon} [H_{\varepsilon}^{\text{\tiny BH}}, \cdot]. \tag{7}$$

- We denote the set of entire analytic elements by \mathfrak{M}_{α} .
- > The dynamics α_t can be extended to complex times through the following absolutely convergent sum,

$$\alpha_z(A) = \sum_{n=0}^{\infty} \frac{z^n}{n!} S^n(A), \quad \forall z \in \mathbb{C}.$$

Definition (Quantum KMS states)

We say that a state ω is a $(\alpha_t, \varepsilon\beta)$ -KMS state if and only if ω is trace-class (normal) and for any $A, B \in \mathfrak{M}_{\alpha}$,

$$\omega(A \alpha_{i \in \beta}(B)) = \omega(BA).$$
(8)

Classical KMS measures

- The classical Kubo-Martin-Schwinger (KMS) condition was introduced by Gallavotti and Verboven in the seventies.
- The Poisson bracket is given by

$$\{F,G\} := \frac{1}{i} \left(\partial_u F \cdot \partial_{\bar{u}} G - \partial_u G \cdot \partial_{\bar{u}} F \right) \,. \tag{9}$$

Definition (Classical KMS measures)

A Borel probability measure μ on $\ell^2(\mathcal{G})$ is a classical KMS measure for the DNLS equation at inverse temperature β if for any F, G smooth functions on $\ell^2(\mathcal{G})$,

$$\beta \int_{E} \{h, G\}(u) F(u) d\mu(u) = \int_{E} \{F, G\}(u) d\mu(u).$$
 (10)

Here h is the classical Hamiltonian of the DNLS equation given by (2).

Characterization of equilibrium

Characterization of Quantum equilibrium:

Proposition (Quantum KMS)

The Bose-Hubbard Gibbs state ω_{ε} , i.e.

$$\omega_arepsilon(\mathcal{A}) = rac{\mathrm{Tr}_{\mathfrak{F}}(e^{-eta H^{\mathsf{BH}}_arepsilon}\mathcal{A})}{\mathrm{Tr}_{\mathfrak{F}}(e^{-eta H^{\mathsf{BH}}_arepsilon})},$$

is the unique KMS state of the \mathscr{W}^* - dynamical system (\mathfrak{M}, α_t) at the inverse temperature $\varepsilon\beta$.

Characterization of Classical equilibrium:

Proposition (Classical KMS, Am.-RATSIMANETRIMANANA)

The DNLS Gibbs measure $\mu_{\beta} = \frac{e^{-\beta h(u)}}{z(\beta)} dL$, $z(\beta) = \int_{E} e^{-\beta h(u)} dL(u)$, is the unique classical KMS measure of the DNLS equation at inverse temperature β .

Convergence of KMS conditions

▶ A Borel probability measure μ on $\ell^2(\mathcal{G})$ is a Wigner measure of $\{\omega_{\varepsilon}\}_{\varepsilon \in (0,\bar{\varepsilon})}$ if there exists a subsequence $(\varepsilon_k)_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} \varepsilon_k = 0$ and for any $f \in \ell^2(\mathcal{G})$,

$$\lim_{k \to \infty} \omega_{\varepsilon_k} (W(f)) = \lim_{k \to \infty} \omega_{\varepsilon_k} \left(e^{i\sqrt{\varepsilon_k} \Phi(f)} \right) = \int_{\ell^2(\mathcal{G})} e^{i\sqrt{2} \Re e^{\langle f, u \rangle}} d\mu.$$
(11)

Theorem (Am.-RATSIMANETRIMANANA)

Let ω_{ε} be the KMS state of the Bose-Hubbard \mathscr{W}^* – dynamical system (\mathfrak{M}, α_t) at inverse temperature $\beta_{\varepsilon} = \varepsilon \beta$ given by (4). Then any Wigner measure μ of the family $\{\omega_{\varepsilon}\}_{\varepsilon \in (0,\overline{\varepsilon})}$ satisfies the classical KMS condition, i.e.: for any F, G smooth functions on $E = \ell^2(\mathcal{G}),$ $\beta \int_E \{h, G\}(u) F(u) d\mu(u) = \int_E \{F, G\}(u) d\mu(u).$ (12)

where h is the DNLS classical Hamiltonian given by (2) and $\{\cdot, \cdot\}$ denotes the Poisson bracket recalled in (9).

Outline

Bose-Hubbard model on (finite) graphs

Dynamical mean field limit Variational mean field limit

Equilibrium states

Gibbs states, Gibbs measures High temperature regime

High temperature limit for Bose-Hubbard

KMS states, KMS measures Convergence result

KMS condition for Hamiltonian PDEs

Hamiltonian PDEs

Gaussian measures: infinite dimension Results and conjectures

Hamiltonian PDEs: Linear system

Consider a positive operator $A: D(A) \subseteq H \rightarrow H$ such that,

$$\exists c > 0, \quad A \ge c \mathbb{1} . \tag{13}$$

A Hamiltonian dynamical system is given by the quadratic Hamiltonian function,

$$h_0: D(A^{1/2}) \to \mathbb{R}, \qquad h_0(u) = \frac{1}{2} \langle u, Au \rangle.$$
 (14)

In this case, the vector field is a linear operator $X_0: D(A) o H$,

$$X_0(u) = -iAu$$

and the linear field equation governing the dynamics of the system is:

$$\dot{u}(t) = X_0(u(t)) = -iAu(t).$$
 (15)

Hamiltonian PDEs: Compactness condition

We suppose that the operator A admits a compact resolvent.

There exists an orthonormal basis in H of eigenvectors {e_j}_{j∈ℕ} of A with their eigenvalues {λ_j}_{j∈ℕ} such that for all j ∈ ℕ,

$$Ae_j = \lambda_j e_j . \tag{16}$$

Furthermore, assume the following assumption:

$$\exists s \ge 0: \quad \sum_{j=1}^{\infty} \frac{1}{\lambda_j^{1+s}} < +\infty.$$
(17)

We note that $\{e_j, ie_j\}_{j \in \mathbb{N}}$ is an O.N.B of $H_{\mathbb{R}}$.

Hamiltonian PDEs: Weighted Sobolev spaces

Weighted Sobolev spaces w.r.t the operator A are constructed as follows: For any $r \in \mathbb{R}$, define the inner product:

$$\forall x, y \in \mathcal{D}(A^{\frac{r}{2}}), \qquad \langle x, y \rangle_{H^r} := \langle A^{r/2}x, A^{r/2}y \rangle.$$

- ▶ H^{s} denotes the Hilbert space $(\mathcal{D}(A^{s/2}), \langle \cdot, \cdot \rangle_{H^{s}})$ with $s \geq 0$.
- ▶ H^{-s} denotes the completion of the pre-Hilbert space $(\mathcal{D}(A^{-s/2}), \langle \cdot, \cdot \rangle_{H^{-s}})$.
- ▶ Hilbert rigging: One has the canonical continuous and dense embedding,

$$H^{s} \subseteq H \subseteq H^{-s}$$
.

We note that H^{-s} identifies also with the dual space of H^s relatively to the inner product of H.

Gaussian measures: infinite dimension

The free Gibbs measure written formally as

$$u_{\beta,\mathbf{0}} \equiv rac{e^{-eta h_{\mathbf{0}}(\cdot)} \, du}{\int e^{-eta h_{\mathbf{0}}(u)} \, du} \, ,$$

is rigorously defined as a Gaussian measure on the Hilbert space H^{-s} .

Definition (Gaussian measure)

 \triangleright The mean-vector of $\mu \in \mathcal{P}(H^{-s})$ is the vector $m \in H^{-s}$ such that:

$$\langle f, m \rangle_{H^{-s}_{\mathbb{R}}} = \int_{H^{-s}} \langle f, u \rangle_{H^{-s}_{\mathbb{R}}} d\mu, \qquad \forall f \in H^{-s}.$$

If m = 0, one says that μ is a centered measure. \triangleright The covariance operator of $\mu \in \mathcal{P}(H^{-s})$ is a linear operator $Q: H_{\mathbb{R}}^{-s} \to H_{\mathbb{R}}^{-s}$ such that:

$$\langle f, Qg \rangle_{H^{-s}_{\mathbb{R}}} = \int_{H^{-s}} \langle f, u - m \rangle_{H^{-s}_{\mathbb{R}}} \langle u - m, g \rangle_{H^{-s}_{\mathbb{R}}} d\mu, \quad \forall f, g \in H^{-s}.$$

 $\triangleright \ \mu \in \mathcal{P}(H^{-s}) \text{ is Gaussian if } B \mapsto \mu(\{y \in H^{-s} : \langle x, y \rangle_{H^{-s}_{\mathbb{R}}} \in B\}) \text{ are Gaussian measures on } \mathbb{R}.$

i.e: Centred Gaussian measures are Gibbs measures over infinite dimensional spaces.

Hamiltonian PDE: Nonlinear system

Nonlinear Hamiltonian system:

- Linear operator A satisfying the compactness condition in (13) and (16).
- ▶ Nonlinear functional $h^{I}: H^{-s} \to \mathbb{R}$ satisfying for some $\beta > 0$:

$$\forall p \in [1,\infty) \qquad e^{-\beta h'(\cdot)} \in L^p(\mu_{\beta,0}) \qquad \text{and} \qquad h' \in \mathbb{D}^{1,p}(\mu_{\beta,0}) \tag{18}$$

$$\mathsf{Gross-Sobolev spaces}$$

The Hamiltonian function:

$$h(u) = \frac{1}{2} \langle u, Au \rangle + h'(u) = h_0(u) + h'(u).$$
 (19)

The vector field of the system is

$$X(u) = -iAu - i\nabla h'(u) = X_0(u) + X'(u), \qquad (20)$$

defines a (non-autonomous) field equation in the interaction representation:

$$\dot{u}(t) = e^{itA} X'(e^{-itA}u(t)).$$

Gibbs measures: Gross-Sobolev spaces

Lemma (Malliavin derivative)

The following linear operator is closable:

$$7: \mathscr{C}^{\infty}_{c,cyl}(H^{-s}) \subset L^{p}(\mu_{\beta,0}) \longrightarrow L^{p}(\mu_{\beta,0}; H^{-s}),$$
$$F = \varphi \circ \pi_{n} \longmapsto \nabla F = \sum_{j=1}^{2n} \partial_{j} \varphi(\pi_{n}(\cdot)) f_{j}$$

The Malliavin derivative is the closure of such linear operator (still denoted by ∇).

Definition (Gross-Sobolev spaces)

The Gross-Sobolev space $\mathbb{D}^{1,p}(\mu_{\beta,0})$ is the closure domain of the Malliavin derivative ∇ with respect to the norm:

$$\|F\|_{\mathbb{D}^{1,p}(\mu_{\beta,0})}^{p} := \|F\|_{L^{p}(\mu_{\beta,0})}^{p} + \|\nabla F\|_{L^{p}(\mu_{\beta,0};H^{-s})}^{p} .$$
⁽²¹⁾

Gibbs measures: infinite dimension

Nonlinear Hamiltonian system:

- Linear operator A satisfying the compactness condition.
- ▶ Nonlinear energy functional $h^{I}: H^{-s} \to \mathbb{R}$ satisfying for some $\beta > 0$:

 $\forall p \in [1,\infty) \qquad e^{-\beta h'(\cdot)} \in L^p(\mu_{\beta,0}) \qquad \text{and} \qquad h' \in \mathbb{D}^{1,p}(\mu_{\beta,0}). \tag{22}$

The vector field of the system is

$$X(u) = -iAu - i\nabla h'(u) = X_0(u) + X'(u).$$
(23)

Definition (Gibbs measure)

The Gibbs measure of the dynamical system (23), at inverse temperature $\beta >$ 0, is:

$$\mu_{\beta} = \frac{e^{-\beta h'(\cdot)} d\mu_{\beta,0}}{\int_{H^{-s}} e^{-\beta h'(u)} d\mu_{\beta,0}} \equiv \frac{1}{z_{\beta}} e^{-\beta h'(\cdot)} d\mu_{\beta,0} .$$
(24)

Classical KMS condition: Hamiltonian PDE

The classical Kubo-Martin-Schwinger (KMS) condition, introduced by Gallavotti and Verboven, characterizes the Gibbs measures.

Definition (Classical KMS states)

A measure $\mu \in \mathcal{P}(H^{-s})$ is a classical KMS state, at inverse temperature β , for the Hamiltonian system (26)-(27) if and only if for all $F, G \in \mathscr{C}^{\infty}_{c,cyl}(H^{-s})$,

$$\int_{H^{-s}} \{F, G\}(u) \, d\mu = \beta \int_{H^{-s}} \langle \nabla F(u), X(u) \rangle \, G(u) \, d\mu \,, \tag{25}$$

with the Poisson bracket $\{\cdot, \cdot\}$ defined in (33).

Here the Hamiltonian function is

$$h(u) = \frac{1}{2} \langle u, Au \rangle + h'(u) = h_0(u) + h'(u), \qquad (26)$$

and the vector field of the system is

$$X(u) = -iAu - i\nabla h'(u) = X_0(u) + X'(u).$$
(27)

Classical KMS condition: Hamiltonian PDE

The classical Kubo-Martin-Schwinger (KMS) condition, introduced by Gallavotti and Verboven, characterizes the Gibbs measures.

Definition (Classical KMS states)

A measure $\mu \in \mathcal{P}(H^{-s})$ is a classical KMS state, at inverse temperature β , for the Hamiltonian system (26)-(27) if and only if for all $F, G \in \mathscr{C}^{\infty}_{c,cyl}(H^{-s})$,

$$\int_{H^{-s}} \{F, G\}(u) \, d\mu = \beta \int_{H^{-s}} \langle \nabla F(u), X(u) \rangle \, G(u) \, d\mu \,, \tag{25}$$

with the Poisson bracket $\{\cdot, \cdot\}$ defined in (33).

Here the Hamiltonian function is

$$h(u) = \frac{1}{2} \langle u, Au \rangle + h'(u) = h_0(u) + h'(u), \qquad (26)$$

and the vector field of the system is

$$X(u) = -iAu - i\nabla h'(u) = X_0(u) + X'(u).$$
(27)

Classical KMS condition: Hamiltonian PDE Assume for all $p \in [1, \infty)$:

$$e^{-\beta h'(\cdot)} \in L^p(\mu_{\beta,0})$$
 and $h' \in \mathbb{D}^{1,p}(\mu_{\beta,0}).$ (28)

Theorem (Am.-Sohinger)

Let $\mu \in \mathcal{P}(H^{-s})$ such that $\mu \ll \mu_{eta,0}$ and suppose that

$$rac{d\mu}{d\mu_{eta, \mathsf{0}}} \in \mathbb{D}^{1,2}(\mu_{eta, \mathsf{0}})\,.$$

Then μ is a classical KMS measure of the PDE Hamiltonian system (26)-(27) if and only if μ is equal to the Gibbs measure, i.e.:

$$\mu_{\beta} = \frac{\mathrm{e}^{-\beta h'} \,\mu_{\beta,0}}{\int_{H^{-s}} \mathrm{e}^{-\beta h'(u)} d\mu_{\beta,0}} = \mu \,.$$

Conjecture

Claim

The Quantum KMS condition for Quantum field Hamiltonians converges in the hight temperature limit towards the Classical KMS condition of corresponding Hamiltonian PDEs ?

References

Statistical mechanics:

- G. Gallavotti and E. Verboven
- Michael Aizenman, Giovanni Gallavotti, Sheldon Goldstein, and Joel Lebowitz

Hight temperature limit:

- Mathieu Lewin, Phan Thành Nam, and Nicolas Rougerie
- Jürg Fröhlich, Antti Knowles, Benjamin Schlein, and Vedran Sohinger
- Andrew Rout and Vedran Sohinger
- Wigner measures: Am.-Francis Nier, Sébastien Breteaux, Michele Correggi, Marco Falconi, Shahnaz Farhat, Marco Olivieri, and recently Benjamin Alvarez

Cylindrical smooth functions

Definition

Let $\{f_j\}_{j\in\mathbb{N}}$ O.N.B of $H_{\mathbb{R}}$. Consider for $n\in\mathbb{N}$ the mapping $\pi_n: H^{-s} \to \mathbb{R}^{2n}$,

$$\pi_n(x) = (\langle x, f_1 \rangle_{H_{\mathbb{R}}}, \dots, \langle x, f_{2n} \rangle_{H_{\mathbb{R}}}).$$
(29)

Define $\mathscr{C}^{\infty}_{c,cyl}(H^{-s})$ as the set of all functions $F: H^{-s} \to \mathbb{R}$ such that

$$F = \varphi \circ \pi_n \tag{30}$$

for some $n \in \mathbb{N}$ and $\varphi \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{2n})$.

The gradient of F at the point $u \in H^{-s}$ is

$$\nabla F(u) = \sum_{j=1}^{2n} \partial_j \varphi(\pi_n(u)) f_j, \qquad (31)$$

where $\partial_j \varphi$ are the partial derivatives with respect the 2n coordinates of φ .

Poisson structure

Consider:

▶ The algebra of smooth bounded cylindrical functions $\mathscr{C}_{b,cvl}^{\infty}(H^{-s})$.

▶
$$F, G \in \mathscr{C}^{\infty}_{b,cyl}(H^{-s})$$
 such that: $\forall u \in H^{-s}$

$$F(u) = \varphi \circ \pi_n(u), \qquad \qquad G(u) = \psi \circ \pi_m(u), \qquad (32)$$

with $\varphi \in \mathscr{C}^{\infty}_{b}(\mathbb{R}^{2n})$ and $\psi \in \mathscr{C}^{\infty}_{b}(\mathbb{R}^{2m})$ for some $n, m \in \mathbb{N}$.

Definition

Then, for all such $F, G \in \mathscr{C}^{\infty}_{b,cvl}(H^{-s})$, the Poisson bracket is:

$$\{F,G\}(u) := \sum_{j=1}^{\min(n,m)} \partial_j^{(1)} \varphi(\pi_n(u)) \ \partial_j^{(2)} \psi(\pi_m(u)) - \partial_j^{(1)} \psi(\pi_m(u)) \ \partial_j^{(2)} \varphi(\pi_n(u)) \ . \tag{33}$$

Convergence argument

► The Bose-Hubbard $(\alpha_t, \varepsilon\beta)$ -KMS state ω_{ε} (formally) satisfies: $\omega_{\varepsilon} (W(f) \alpha_{i\varepsilon\beta}(W(g))) = \omega_{\varepsilon} (W(g) W(f))$.

► A simple computation leads to:

$$\omega_{\varepsilon}\left(W(f)\,\frac{\alpha_{i\varepsilon\beta}(W(g))-W(g)}{i\varepsilon}\right)=\omega_{\varepsilon}\left(\frac{[W(g),W(f)]}{i\varepsilon}\right)\,.$$
(34)

Key arguments:

$$\lim_{k \to \infty} \omega_{\varepsilon_k} \left(\frac{[W(g), W(f)]}{i\varepsilon_k} \right) = \int_E \left\{ e^{\sqrt{2}i\Re_{\mathrm{e}}\langle g, u \rangle}, e^{\sqrt{2}i\Re_{\mathrm{e}}\langle f, u \rangle} \right\} d\mu, \qquad (35)$$

$$\lim_{k\to\infty}\omega_{\varepsilon_k}\left(W(f)\frac{\alpha_{i\varepsilon\beta}(W(g))-W(g)}{i\varepsilon}\right) = \beta\int_E \left\{e^{\sqrt{2}i\Re e\langle g,u\rangle},h(u)\right\}e^{\sqrt{2}i\Re e\langle f,u\rangle}\,d\mu\,.$$
 (36)

Remark

No Dyson expansion nor Variational (entropy) arguments are used.