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The discrete Laplacian
I A �nite graph G = (V , E) where V is the set of vertices and E is the set of edges.
I Assume that G is a simple undirected graph.
I The degree of each vertex x ∈ V is denoted by deg(x).
I We denote the graph by G or V .

The Hilbert space of all complex-valued functions on V denoted as `2 (G) and endowed

with its natural scalar product and with the orthonormal basis (ex)x∈V such that

ex(y) := δx ,y , ∀x , y ∈ V .

De�nition

The discrete Laplacian on the graph G is a non-positive bounded operator on `2 (G)
given by,

(∆Gψ) (x) := −deg(x)ψ(x) +
∑

y∈V ,y∼x
ψ(y),

with the above sum running over the nearest neighbors of x and ψ is any function in

`2(G).
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Fock space and CCR's relations

I Consider the bosonic Fock space,

F = C⊕
∞⊕
n=1

⊗n
s `

2 (G) ,

where ⊗n
s `

2 (G) denotes the symmetric n-fold tensor product of `2 (G).

I Introduce the usual creation and annihilation operators acting on the bosonic Fock

space,

ax = a(ex) and a∗x = a∗(ex) ,

then the following canonical commutation relations are satis�ed,[
ax , a

∗
y

]
= δx ,y 1F and

[
a∗x , a

∗
y

]
= [ax , ay ] = 0, ∀x , y ∈ V .
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The Bose-Hubbard Hamiltonian

De�nition (Bose-Hubbard Hamiltonian)

For ε ∈ (0, ε̄), λ > 0 and κ < 0, de�ne the ε-dependent Bose-Hubbard Hamiltonian on

the bosonic Fock space F by

HBH

ε :=
ε

2

∑
x ,y∈V :y∼x

(a∗x − a∗y )(ax − ay ) +
ε2λ

2

∑
x∈V

a∗xa
∗
xaxax − εκ

∑
x∈V

a∗xax .

Here λ is the on-site interaction, κ is the chemical potential and ε is the semiclassical

parameter.

Remark
The �rst term of the Hamiltonian HBH

ε is the kinetic part of the system and corresponds

to the second quantization of the discrete Laplacian. Indeed, one can write

1

2

∑
x ,y∈V :y∼x

(a∗x − a∗y )(ax − ay ) =
∑
x∈V

deg(x) a∗xax −
∑

x ,y∈V ,y∼x
a∗xay = dΓ(−∆G) .
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Dynamical mean �eld limit
For N number of particles, de�ne the many-body Hamiltonian HN :

HN ≡ ε−1HBH

ε

∣∣
⊗N

s `
2(G)

with ε = N−1

(Mean-�eld regime for HN) N →∞ ≡ ε→ 0 (Semiclassical regime for HBH

ε )

Theorem (PhD C. Rou�ort)

The mean-�eld regime of the Bose-Hubbard Hamiltonian is governed by the Discrete

nonlinear Schrödinger equation (DNLS) given by{
i∂tun(t) = −

(
(∆G + κ)u(t)

)
n

+ λ
2 |un(t)|2un(t), ∀n ∈ V

u(t = 0) = u(0) ∈ `2(G)
(1)

Mean-�eld propagation:
I Coherent states
I Factorized states
I Wigner measures
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Variational mean �eld limit
I Ground state energy:

EN := inf
‖ψN‖⊗N

s `
2(G)

=1
〈ψN ,HNψ

N〉F =
1

N
inf

‖ψN‖⊗N
s `

2(G)
=1
〈ψN ,HBH

N−1ψ
N〉F.

I The DNLS Hamiltonian energy:

h(u) = −〈u, (∆G + κ)u〉`2(G) +
λ

4

∑
n∈V
|un|4. (2)

Theorem (PhD Q. Liard)

In the mean �eld regime the ground state energy of HN is well described by the lowest

level energy of the Discrete nonlinear Schrödinger equation (DNLS):

lim
N→∞

EN = inf
‖u‖`2(G)=1

h(u) <∞,

where HN ≡ ε−1HBH

ε

∣∣
⊗N

s `
2(G)

with ε = N−1.



Bose-Hubbard at positive temperature

I So far the discussion on Bose-Hubbard was about the zero temperature.

I The Bose-Hubbard Hamiltonian de�nes a W ∗− dynamical system (M, αt) where

M is the von Neumann algebra of all bounded operators B(F) on the Fock space

and αt is the one parameter group of automorphisms de�ned by

αt(A) = e i
t
ε
HBH
ε A e−i

t
ε
HBH
ε ,

for any A ∈M.

I Question: Can we describe the equilibrium states of the Bose-Hubbard model at

positive temperature in the semiclassical regime?



Bose-Hubbard equilibrium states

I Here we consider a �nite graph.

Lemma (Partition function)

Since the chemical potential κ < 0 then

TrF

(
e−βH

BH
ε

)
<∞. (3)

De�nition (Gibbs equilibrium states)

The Gibbs equilibrium state of the Bose-Hubbard W ∗− dynamical system (M, αt) at

inverse temperature εβ is well de�ned, according to (3), and it is given by

ωε(A) =
TrF(e−βH

BH
ε A)

TrF(e−βHBH
ε )

. (4)



DNLS Gibbs measures

Denote

E = `2(G) ≡ R2d .

For a negative chemical potential κ < 0,

zβ =

∫
E
e−βh(u) dL < +∞ , (5)

for all β > 0. Here dL is the Lebesgue measure on E .

De�nition (DNLS Gibbs measure)

The equilibrium Gibbs measure of the DNLS Hamiltonian system (1) at inverse

temperature β > 0, is the Borel probability measure given by

µβ =
e−βh(·) dL∫
E e−βh(u) dL

≡ 1

zβ
e−βh(·) dL . (6)



High temperature limit

The high temperature regime corresponds to

(Temperature) Tε =
1

βε
→∞ ≡ βε = εβ → 0 (Inverse temperature) .

Hence

Hight temperature regime ≡ Semiclassical regime ≡ Mean �eld regime

Claim

In the high temperature limit the Bose-Hubbard Gibbs state ωε converges towards the
DNLS Gibbs measure µβ .

I Entropy and Berezin-Lieb inequality

I Dyson-Schwinger expansion

I Kubo-Martin-Schwinger (KMS) condition ?



Quantum KMS states
I An element A ∈M is entire analytic if and only if for any t > 0 the sum below is

convergent,
∞∑
n=0

tn

n!
‖Sn(A)‖ <∞ , where S(·) =

i

ε
[HBH

ε , ·]. (7)

I We denote the set of entire analytic elements by Mα.
I The dynamics αt can be extended to complex times through the following

absolutely convergent sum,

αz(A) =
∞∑
n=0

zn

n!
Sn(A) , ∀z ∈ C .

De�nition (Quantum KMS states)

We say that a state ω is a (αt , εβ)-KMS state if and only if ω is trace-class (normal)

and for any A,B ∈Mα,

ω(A αiεβ(B)) = ω(BA) . (8)



Classical KMS measures

I The classical Kubo-Martin-Schwinger (KMS) condition was introduced by

Gallavotti and Verboven in the seventies.

I The Poisson bracket is given by

{F ,G} :=
1

i
(∂uF · ∂ūG − ∂uG · ∂ūF ) . (9)

De�nition (Classical KMS measures)

A Borel probability measure µ on `2(G) is a classical KMS measure for the DNLS

equation at inverse temperature β if for any F ,G smooth functions on `2(G),

β

∫
E
{h,G} (u) F (u) dµ(u) =

∫
E
{F ,G} (u) dµ(u) . (10)

Here h is the classical Hamiltonian of the DNLS equation given by (2).



Characterization of equilibrium
I Characterization of Quantum equilibrium:

Proposition (Quantum KMS)

The Bose-Hubbard Gibbs state ωε, i.e.

ωε(A) =
TrF(e−βH

BH
ε A)

TrF(e−βHBH
ε )

,

is the unique KMS state of the W ∗− dynamical system (M, αt) at the inverse

temperature εβ.

I Characterization of Classical equilibrium:

Proposition (Classical KMS, Am.-RATSIMANETRIMANANA)

The DNLS Gibbs measure µβ = e−β h(u)

z(β) dL , z(β) =
∫
E e−β h(u) dL(u) , is the unique

classical KMS measure of the DNLS equation at inverse temperature β.



Convergence of KMS conditions
I A Borel probability measure µ on `2(G) is a Wigner measure of {ωε}ε∈(0,ε̄) if there

exists a subsequence (εk)k∈N such that limk→∞ εk = 0 and for any f ∈ `2(G),

lim
k→∞

ωεk (W (f ))

Generating functional

= lim
k→∞

ωεk

(
e i
√
εk Φ(f )

)
=

∫
`2(G)

e i
√
2<e〈f ,u〉 dµ

Characteristic function

. (11)

Theorem (Am.-RATSIMANETRIMANANA)

Let ωε be the KMS state of the Bose-Hubbard W ∗− dynamical system (M, αt) at

inverse temperature βε = ε β given by (4). Then any Wigner measure µ of the family

{ωε}ε∈(0,ε̄) satis�es the classical KMS condition, i.e.: for any F ,G smooth functions on

E = `2(G),

β

∫
E
{h,G} (u) F (u) dµ(u) =

∫
E
{F ,G} (u) dµ(u) . (12)

where h is the DNLS classical Hamiltonian given by (2) and {·, ·} denotes the Poisson
bracket recalled in (9).
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Hamiltonian PDEs: Linear system

Consider a positive operator A : D(A) ⊆ H → H such that,

∃c > 0, A ≥ c1 . (13)

A Hamiltonian dynamical system is given by the quadratic Hamiltonian function,

h0 : D(A1/2)→ R, h0(u) =
1

2
〈u,Au〉 . (14)

In this case, the vector �eld is a linear operator X0 : D(A)→ H,

X0(u) = −iAu,

and the linear �eld equation governing the dynamics of the system is:

u̇(t) = X0(u(t)) = −iAu(t) . (15)



Hamiltonian PDEs: Compactness condition

We suppose that the operator A admits a compact resolvent.

I There exists an orthonormal basis in H of eigenvectors {ej}j∈N of A with their

eigenvalues {λj}j∈N such that for all j ∈ N,

Aej = λj ej . (16)

I Furthermore, assume the following assumption:

∃s ≥ 0 :
∞∑
j=1

1

λ1+s
j

< +∞. (17)

We note that {ej , iej}j∈N is an O.N.B of HR.



Hamiltonian PDEs: Weighted Sobolev spaces

Weighted Sobolev spaces w.r.t the operator A are constructed as follows: For any

r ∈ R, de�ne the inner product:

∀x , y ∈ D(A
r
2 ) , 〈x , y〉Hr := 〈Ar/2x ,Ar/2y〉 .

I Hs denotes the Hilbert space (D(As/2), 〈·, ·〉Hs ) with s ≥ 0.

I H−s denotes the completion of the pre-Hilbert space (D(A−s/2), 〈·, ·〉H−s ).

I Hilbert rigging: One has the canonical continuous and dense embedding,

Hs ⊆ H ⊆ H−s .

We note that H−s identi�es also with the dual space of Hs relatively to the inner

product of H.



Gaussian measures: in�nite dimension
The free Gibbs measure written formally as

µβ,0 ≡
e−βh0(·) du∫
e−βh0(u) du

,

is rigorously de�ned as a Gaussian measure on the Hilbert space H−s .

De�nition (Gaussian measure)

. The mean-vector of µ ∈ P(H−s) is the vector m ∈ H−s such that:

〈f ,m〉
H−s
R

=

∫
H−s

〈f , u〉
H−s
R

dµ , ∀f ∈ H−s .

If m = 0, one says that µ is a centered measure.
. The covariance operator of µ ∈ P(H−s) is a linear operator Q : H−s

R → H−s
R such that:

〈f ,Q g〉
H−s
R

=

∫
H−s

〈f , u −m〉
H−s
R
〈u −m, g〉

H−s
R

dµ , ∀f , g ∈ H−s .

. µ ∈ P(H−s) is Gaussian if B 7→ µ({y ∈ H−s : 〈x , y〉
H−s
R
∈ B}) are Gaussian measures on R.

i.e: Centred Gaussian measures are Gibbs measures over in�nite dimensional spaces.



Hamiltonian PDE: Nonlinear system
Nonlinear Hamiltonian system:

I Linear operator A satisfying the compactness condition in (13) and (16).

I Nonlinear functional hI : H−s → R satisfying for some β > 0:

∀p ∈ [1,∞) e−βh
I ( ·) ∈ Lp(µβ,0) and hI ∈ D1,p(µβ,0)

Gross-Sobolev spaces

(18)

I The Hamiltonian function:

h(u) =
1

2
〈u,Au〉+ hI (u) = h0(u) + hI (u) . (19)

The vector �eld of the system is

X (u) = −iAu − i∇hI (u) = X0(u) + X I (u) , (20)

de�nes a (non-autonomous) �eld equation in the interaction representation:

u̇(t) = e itAX I (e−itAu(t)) .



Gibbs measures: Gross-Sobolev spaces

Lemma (Malliavin derivative)

The following linear operator is closable:

∇ : C∞c,cyl(H
−s) ⊂ Lp(µβ,0) −→ Lp(µβ,0;H−s) ,

F = ϕ ◦ πn 7−→ ∇F =
2n∑
j=1

∂jϕ(πn(·)) fj .

The Malliavin derivative is the closure of such linear operator (still denoted by ∇).

De�nition (Gross-Sobolev spaces)

The Gross-Sobolev space D1,p(µβ,0) is the closure domain of the Malliavin derivative ∇
with respect to the norm:

‖F‖pD1,p(µβ,0)
:= ‖F‖pLp(µβ,0) + ‖∇F‖p

Lp(µβ,0;H−s)
. (21)



Gibbs measures: in�nite dimension
Nonlinear Hamiltonian system:

I Linear operator A satisfying the compactness condition.

I Nonlinear energy functional hI : H−s → R satisfying for some β > 0:

∀p ∈ [1,∞) e−βh
I ( ·) ∈ Lp(µβ,0) and hI ∈ D1,p(µβ,0) . (22)

The vector �eld of the system is

X (u) = −iAu − i∇hI (u) = X0(u) + X I (u) . (23)

De�nition (Gibbs measure)

The Gibbs measure of the dynamical system (23), at inverse temperature β > 0, is:

µβ =
e−βh

I (·) dµβ,0∫
H−s e−βh

I (u) dµβ,0
≡ 1

zβ
e−βh

I (·) dµβ,0 . (24)



Classical KMS condition: Hamiltonian PDE
The classical Kubo-Martin-Schwinger (KMS) condition, introduced by Gallavotti and

Verboven, characterizes the Gibbs measures.

De�nition (Classical KMS states)

A measure µ ∈ P(H−s) is a classical KMS state, at inverse temperature β, for the
Hamiltonian system (26)-(27) if and only if for all F ,G ∈ C∞c,cyl(H

−s),∫
H−s

{F ,G}(u) dµ = β

∫
H−s

〈∇F (u),X (u)〉G (u) dµ , (25)

with the Poisson bracket {·, ·} de�ned in (33).

Here the Hamiltonian function is

h(u) =
1

2
〈u,Au〉+ hI (u) = h0(u) + hI (u) , (26)

and the vector �eld of the system is

X (u) = −iAu − i∇hI (u) = X0(u) + X I (u) . (27)
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Classical KMS condition: Hamiltonian PDE
Assume for all p ∈ [1,∞):

e−βh
I ( ·) ∈ Lp(µβ,0) and hI ∈ D1,p(µβ,0) . (28)

Theorem (Am.-Sohinger)

Let µ ∈ P(H−s) such that µ� µβ,0 and suppose that

dµ

dµβ,0
∈ D1,2(µβ,0) .

Then µ is a classical KMS measure of the PDE Hamiltonian system (26)-(27) if and

only if µ is equal to the Gibbs measure, i.e.:

µβ =
e−βh

I
µβ,0∫

H−s e−βh
I (u)dµβ,0

= µ .



Conjecture

Claim

The Quantum KMS condition for Quantum �eld Hamiltonians converges in the hight

temperature limit towards the Classical KMS condition of corresponding Hamiltonian

PDEs ?
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Cylindrical smooth functions

De�nition

Let {fj}j∈N O.N.B of HR. Consider for n ∈ N the mapping πn : H−s → R2n,

πn(x) = (〈x , f1〉HR , . . . , 〈x , f2n〉HR) . (29)

De�ne C∞c,cyl(H
−s) as the set of all functions F : H−s → R such that

F = ϕ ◦ πn (30)

for some n ∈ N and ϕ ∈ C∞c (R2n).

The gradient of F at the point u ∈ H−s is

∇F (u) =
2n∑
j=1

∂jϕ(πn(u)) fj , (31)

where ∂jϕ are the partial derivatives with respect the 2n coordinates of ϕ.



Poisson structure

Consider:

I The algebra of smooth bounded cylindrical functions C∞b,cyl(H
−s).

I F ,G ∈ C∞b,cyl(H
−s) such that: ∀u ∈ H−s ,

F (u) = ϕ ◦ πn(u) , G (u) = ψ ◦ πm(u) , (32)

with ϕ ∈ C∞b (R2n) and ψ ∈ C∞b (R2m) for some n,m ∈ N.

De�nition

Then, for all such F ,G ∈ C∞b,cyl(H
−s), the Poisson bracket is:

{F ,G}(u) :=

min(n,m)∑
j=1

∂
(1)
j ϕ(πn(u)) ∂

(2)
j ψ(πm(u))− ∂(1)

j ψ(πm(u)) ∂
(2)
j ϕ(πn(u)) . (33)



Convergence argument

I The Bose-Hubbard (αt , εβ)-KMS state ωε (formally) satis�es:

ωε (W (f )αiεβ(W (g))) = ωε (W (g)W (f )) .

I A simple computation leads to:

ωε

(
W (f )

αiεβ(W (g))−W (g)

iε

)
= ωε

(
[W (g),W (f )]

iε

)
. (34)

I Key arguments:

lim
k→∞

ωεk

(
[W (g),W (f )]

iεk

)
=

∫
E

{e
√
2i<e〈g,u〉, e

√
2i<e〈f ,u〉} dµ , (35)

lim
k→∞

ωεk

(
W (f )

αiεβ(W (g))−W (g)

iε

)
= β

∫
E

{e
√
2i<e〈g,u〉, h(u)} e

√
2i<e〈f ,u〉 dµ . (36)

Remark
No Dyson expansion nor Variational (entropy) arguments are used.
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