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The discrete Laplacian
» A finite graph G = (V,E) where V is the set of vertices and & is the set of edges.
» Assume that G is a simple undirected graph.
» The degree of each vertex x € V is denoted by deg(x).
> \We denote the graph by G or V.
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The discrete Laplacian
> A finite graph G = (V, &) where V is the set of vertices and € is the set of edges.
» Assume that G is a simple undirected graph.
» The degree of each vertex x € V is denoted by deg(x).
> \We denote the graph by G or V.
The Hilbert space of all complex-valued functions on V denoted as ¢? (G) and endowed
with its natural scalar product and with the orthonormal basis (ex), .\ such that

ex(y) ==0x,y, VYx,y € V.

Definition
The discrete Laplacian on the graph G is a non-positive bounded operator on 2 (G)
given by,

(Ag) (x) := —deg(X)¥(x) + Y W(y),

yeV,y~x

with the above sum running over the nearest neighbors of x and 4 is any function in

2(G).



Fock space and CCR's relations

» Consider the bosonic Fock space,

F=CaPeit(9),

n=1

where ®7/2 (G) denotes the symmetric n-fold tensor product of £2 (G).



Fock space and CCR's relations

» Consider the bosonic Fock space,

F=CaPeit(9),
n=1
where ®7/2 (G) denotes the symmetric n-fold tensor product of £2 (G).

» Introduce the usual creation and annihilation operators acting on the bosonic Fock
space,
ax =a(ex) and a; = a"(e),

then the following canonical commutation relations are satisfied,

lax,a)] = 0xy15 and [a},a)] =[ax,a] =0, Vx,yeV.



The Bose-Hubbard Hamiltonian
Definition (Bose-Hubbard Hamiltonian)

For e € (0,£), A > 0 and k < 0, define the e-dependent Bose-Hubbard Hamiltonian on
the bosonic Fock space § by

BH € * * 52)‘ * _% *
HEM = 5 E (a% —ay)(ax —ay) + = E ayayaxax — €K E a, ax.
X,y€Viy~x xeV xeV

Here )\ is the on-site interaction, & is the chemical potential and ¢ is the semiclassical
parameter.



The Bose-Hubbard Hamiltonian
Definition (Bose-Hubbard Hamiltonian)

For e € (0,&), A > 0 and xk < 0, define the e-dependent Bose-Hubbard Hamiltonian on
the bosonic Fock space § by

2
€ *k £ € )\ k) 3k *
HBY .= o E (a% —ay)(ax — ay) + = E ayayaxax — ek E a,ax.

X,y€Viy~x xeV xeV

Here )\ is the on-site interaction, & is the chemical potential and ¢ is the semiclassical
parameter.

Remark
The first term of the Hamiltonian HE2" is the kinetic part of the system and corresponds
to the second quantization of the discrete Laplacian. Indeed, one can write

% S @) a—a) =Y deg()aa— Y aia, = dr(-Ag).

X,y€V:y~x xeV X,y€V, y~x



Dynamical mean field limit
For N number of particles, define the many-body Hamiltonian Hy :

Hy = e THE"| oug) With e = N1

(Mean-field regime for Hy) N —o00 = € —0 (Semiclassical regime for H-")

Theorem (PhD C. Rouffort)

The mean-field regime of the Bose-Hubbard Hamiltonian is governed by the Discrete
nonlinear Schrédinger equation (DNLS) given by

{i@tu,,(t) = —((Ag + K)u(t)),, + 3lun(t)Pun(t), VYneV O

u(t=0) = u(0) € 2(G)



Dynamical mean field limit
For N number of particles, define the many-body Hamiltonian Hy :

Hy = e THE"| oug) With e = N1

(Mean-field regime for Hy) N —o00 = € —0 (Semiclassical regime for H-")

Theorem (PhD C. Rouffort)

The mean-field regime of the Bose-Hubbard Hamiltonian is governed by the Discrete
nonlinear Schrédinger equation (DNLS) given by

idrun(t) = —((Ag + r)u(t)), + 3 un(t)Pun(t), VYneV (1)
u(t=0) = u(0) € (3(G)

Mean-field propagation:
» Coherent states
> Factorized states
> Wigner measures



Variational mean field limit
» Ground state energy:

Evi=  inf (WM HMp =1 inf (N, HEL M),

B ||¢NI|®L\IZZ(Q):1 B N ”¢N|l®é\l¢2(g):1
» The DNLS Hamiltonian energy:
A
h(u) = —{u, (g + K)u)a(g) + D lual*. (2)
neV

Theorem (PhD Q. Liard)

In the mean field regime the ground state energy of Hy is well described by the lowest
level energy of the Discrete nonlinear Schrédinger equation (DNLS):

lim Ey= inf  h(u) < oo,
N—so00 lull 2y =1
where Hy=e1 Hf”‘@),vez(g) with e = N1



Bose-Hubbard at positive temperature

» So far the discussion on Bose-Hubbard was about the zero temperature.

» The Bose-Hubbard Hamiltonian defines a #*— dynamical system (90, ;) where
9 is the von Neumann algebra of all bounded operators #(F) on the Fock space
and a; is the one parameter group of automorphisms defined by

it yBH it yBH
ap(A) = et Ae=icHe

for any A € 9.

» Question: Can we describe the equilibrium states of the Bose-Hubbard model at
positive temperature in the semiclassical regime?



Bose-Hubbard equilibrium states

» Here we consider a finite graph.

Lemma (Partition function)

Since the chemical potential x < 0 then

Trg (e—ﬁ”?”) < 0. (3)

Definition (Gibbs equilibrium states)

The Gibbs equilibrium state of the Bose-Hubbard % *— dynamical system (91, o) at
inverse temperature £0 is well defined, according to (3), and it is given by

Trg(e_ﬁHEBH A)

P (e

(4)



DNLS Gibbs measures

Denote
E = (*(G) = R*.

For a negative chemical potential x < 0,
zg = / e M) gl < 400, (5)
E

for all B > 0. Here dL is the Lebesgue measure on E.
Definition (DNLS Gibbs measure)

The equilibrium Gibbs measure of the DNLS Hamiltonian system (1) at inverse
temperature 3 > 0, is the Borel probability measure given by
—Bh(-

MO T e PR dL — 25 ©



High temperature limit

The high temperature regime corresponds to

1
(Temperature) T.=— — o0 = f[.=¢8—0 (Inverse temperature).

Be

Hence

Hight temperature regime = Semiclassical regime = Mean field regime

Claim

In the high temperature limit the Bose-Hubbard Gibbs state w. converges towards the
DNLS Gibbs measure pig.

» Entropy and Berezin-Lieb inequality
» Dyson-Schwinger expansion
» Kubo-Martin-Schwinger (KMS) condition ?



Quantum KMS states

> An element A € 9 is entire analytic if and only if for any t > 0 the sum below is
convergent,
o= t” i
Z o |S"(A)|| < oo, where S(-)= E[HEH,- ) (7)
n=0
» We denote the set of entire analytic elements by 9i,,.
» The dynamics a; can be extended to complex times through the following

absolutely convergent sum,

oy (A) = Zn— S"(A), vzeC.

Definition (Quantum KMS states)

We say that a state w is a (¢, 23)-KMS state if and only if w is trace-class (normal)
and for any A, B € M.,
w(A ai-3(B)) = w(BA). (8)



Classical KMS measures

» The classical Kubo-Martin-Schwinger (KMS) condition was introduced by
Gallavotti and Verboven in the seventies.

» The Poisson bracket is given by

| =

{F, G} = = (auF'agG—auG'agF) . (9)

-~

Definition (Classical KMS measures)

A Borel probability measure p on £2(G) is a classical KMS measure for the DNLS
equation at inverse temperature §3 if for any F, G smooth functions on ¢2(G),

8 /E {h, G} (u) F(u) dp(u) = /E {F, G} () d(u). (10)

Here h is the classical Hamiltonian of the DNLS equation given by (2).



Characterization of equilibrium

» Characterization of Quantum equilibrium:

Proposition (Quantum KMS)
The Bose-Hubbard Gibbs state w,, i.e.

e Trz(e PHE" A)
Ws( )— W,

is the unique KMS state of the #*— dynamical system (90, a+) at the inverse
temperature /3.

» Characterization of Classical equilibrium:

Proposition (Classical KMS, Am.-RATSIMANETRIMANANA)

The DNLS Gibbs measure pg = %;;u)dL, z(B) = [z e P dL(u), is the unique

classical KMS measure of the DNLS equation at inverse temperature (3.



Convergence of KMS conditions
> A Borel probability measure p on £2(G) is a Wigner measure of {w. }.c(0,7) if there

exists a subsequence (gx)ken such that limy_ o e, = 0 and for any f € /2(G),
im o (W(F) = lim we, (e'vs7 ¢(f)) = / eVER(f) g (11)
k—oo | 1 k—00 2(G)

Generating functional L 1
Characteristic function

Theorem (Am.-RATSIMANETRIMANANA)

Let w. be the KMS state of the Bose-Hubbard #*— dynamical system (90, a;) at
inverse temperature . = € (3 given by (4). Then any Wigner measure p of the family
{we}ee(o,7) satisfies the classical KMS condition, i.e.: for any F, G smooth functions on

E = £%(G),
8 /E {h, G} (u) F(u) dp(u) = /E {F, G} () d(u).. (12)

where h is the DNLS classical Hamiltonian given by (2) and {-, -} denotes the Poisson
bracket recalled in (9).
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Hamiltonian PDEs: Linear system
Consider a positive operator A: D(A) C H — H such that,

dc >0, A>cl.

A Hamiltonian dynamical system is given by the quadratic Hamiltonian function,

ho: D(AV2) SR, ho(u) = %<U,Au>.

In this case, the vector field is a linear operator Xy : D(A) — H,
Xo(u) = —iAu,
and the linear field equation governing the dynamics of the system is:

i(t) = Xo(u(t)) = —iAu(t).

(15)



Hamiltonian PDEs: Compactness condition

We suppose that the operator A admits a compact resolvent.

» There exists an orthonormal basis in H of eigenvectors {ej};cn of A with their
eigenvalues {\;};en such that for all j € N,

Aej = )\j ej. (16)

» Furthermore, assume the following assumption:

o0

1
ds>0: Z}\Hs<+oo. (17)
j=1 %

We note that {e;, iej};jcn is an O.N.B of Hg.



Hamiltonian PDEs: Weighted Sobolev spaces

Weighted Sobolev spaces w.r.t the operator A are constructed as follows: For any
r € R, define the inner product:

Vx,y € D(AZ),  (x,y)ur = (ATPx, APy).

» H° denotes the Hilbert space (D(A%/?), (-,-)ys) with s > 0.
» H~° denotes the completion of the pre-Hilbert space (D(A=5/2), (-, ) y—s).

» Hilbert rigging: One has the canonical continuous and dense embedding,
H*CHCH™.

We note that H~* identifies also with the dual space of H* relatively to the inner
product of H.



Gaussian measures: infinite dimension
The free Gibbs measure written formally as
e Ph() duy
:LLB,O = f e—ﬁho(u) du )

is rigorously defined as a Gaussian measure on the Hilbert space H~*.

Definition (Gaussian measure)

> The mean-vector of u € P(H™?) is the vector m € H™*° such that:

(Fom) e = /_5 (Fuhye du,  VFEH™

If m =0, one says that p is a centered measure.
> The covariance operator of 1 € P(H™°) is a linear operator Q : Hy°® — Hy° such that:

(f, Qg)l,_,m_S = /_ (fu— m)HR_s (u— m,g)HR_s du, Vf,ge H™".
> u € P(H™*) is Gaussian if B — u({y € H*: (x,y),,—s € B}) are Gaussian measures on R.
R

i.e: Centred Gaussian measures are Gibbs measures over infinite dimensional spaces.



Hamiltonian PDE: Nonlinear system
Nonlinear Hamiltonian system:
» Linear operator A satisfying the compactness condition in (13) and (16).
» Nonlinear functional h' : H=5 — R satisfying for some 8 > 0:

Vp € [1, 00) e B () ¢ LP(1p,0) and h' e DMP(us0) (18)

e |
Gross-Sobolev spaces

» The Hamiltonian function:
() = 5 {u, Au) + ' (u) = ho) + H'(u). (19)
The vector field of the system is
X(u) = —iAu — iVh (u) = Xo(uv) + X! (v), (20)
defines a (non-autonomous) field equation in the interaction representation:

i(t) = e X! (e7™u(t)).



Gibbs measures: Gross-Sobolev spaces
Lemma (Malliavin derivative)
The following linear operator is closable:

VG (H®) C LP(upo) — LP(ppoi H),
2n

F=ponm, — VF= Zaj(p(ﬂn(-)) i o
j=1

The Malliavin derivative is the closure of such linear operator (still denoted by V).

Definition (Gross-Sobolev spaces)

The Gross-Sobolev space DP(puz) is the closure domain of the Malliavin derivative V
with respect to the norm:

VF1B g0y = 1 F sy IV F g ey - (21)



Gibbs measures: infinite dimension
Nonlinear Hamiltonian system:
» Linear operator A satisfying the compactness condition.
» Nonlinear energy functional h' : H=5 — R satisfying for some 3 > 0:

Vpe[l,o0) e PM0) e 1P(ugy) and W e DYP(ugo).  (22)
The vector field of the system is

X(u) = —iAu — iVh' (u) = Xo(u) + X' (v). (23)

Definition (Gibbs measure)

The Gibbs measure of the dynamical system (23), at inverse temperature § > 0, is:

—Bh'(:) ¢ 1
_ € H3,0 _ - —Bh' (") d 24
He fH—S e_ﬁhl(u) d,uﬂ,O - z3 € Ha0- ( )




Classical KMS condition: Hamiltonian PDE

The classical Kubo-Martin-Schwinger (KMS) condition, introduced by Gallavotti and
Verboven, characterizes the Gibbs measures.

Definition (Classical KMS states)

A measure 1 € P(H™°) is a classical KMS state, at inverse temperature 3, for the
Hamiltonian system (26)-(27) if and only if for all F, G € €22,(H™°),

| AFGY@dn=5 [ (VF().X(w) 6(w)du, (25)

with the Poisson bracket {-,-} defined in (33).



Classical KMS condition: Hamiltonian PDE

The classical Kubo-Martin-Schwinger (KMS) condition, introduced by Gallavotti and
Verboven, characterizes the Gibbs measures.

Definition (Classical KMS states)

A measure 1 € P(H™°) is a classical KMS state, at inverse temperature 3, for the
Hamiltonian system (26)-(27) if and only if for all F, G € €22,(H™°),

| AF Gy du=5 [ (V). X() 6(w) d, (25)

with the Poisson bracket {-,-} defined in (33).
Here the Hamiltonian function is
1
h(u) = 2 (u, Au) + ' (u) = ho(u) + h'(u), (26)

and the vector field of the system is
X(u) = —iAu — iVh (u) = Xo(u) + X' (u). (27)



Classical KMS condition: Hamiltonian PDE

Assume for all p € [1, 00):

e M € P(ugo)  and  H € DMP(ugo). (28)

Theorem (Am.-Sohinger)
Let € P(H™®) such that ;1 < 1530 and suppose that

du 1,2
—— e D> .
duﬁ,o (Nﬁ,o)

Then p is a classical KMS measure of the PDE Hamiltonian system (26)-(27) if and
only if 1 is equal to the Gibbs measure, i.e.:

_ e_,BhI MIB,O _
Jrs e~ Ph'(Wdpg g

[2%e]



Conjecture

Claim
The Quantum KMS condition for Quantum field Hamiltonians converges in the hight
temperature limit towards the Classical KMS condition of corresponding Hamiltonian

PDEs ?
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Cylindrical smooth functions

Let {f}jen O.N.B of Hg. Consider for n € N the mapping 7, : H=5 — R?",

71'n(X):(<X7ﬁ>/"/nz="'7<Xa f2”>H]R)' (29)
Define 2 ,(H ") as the set of all functions F : H™* — R such that
F=ypom, (30)

for some n € N and ¢ € €>°(R?").
The gradient of F at the point u € H™* is
2n
VF(u) =) gjp(ma(u)) (31)
j=1

where 0;p are the partial derivatives with respect the 2n coordinates of .



Poisson structure
Consider:
> The algebra of smooth bounded cylindrical functions 2, ,(H™).
> F,G € 6pe,(H®) such that: Vu e H™,
F(u) = pomn(u), G(u) = v omm(u), (32)
with ¢ € €2°(R?") and ¢ € €2°(R?™) for some n,m € N.

Then, for all such F, G € ‘flfiy,(H_s), the Poisson bracket is:

min(n,m)

{F.6Hu) = > 0Pp(ma(u)) 0P (mm(u)) — OV p(wm(u)) 8P p(ma(u)) . (33)

J=1



Convergence argument

» The Bose-Hubbard (o, ¢3)-KMS state w, (formally) satisfies:
we (W(F) ics(W(g))) = w= (W(g) W(F)) .

> A simple computation leads to:

o (i) 22 W)= W), (IWiE)L WEAT) 34)
> Key arguments:

k'i}”;o We, <%}m) _ /E{e\/ii%e<g,u)7eﬁi%e(f,u)} dM7 (35)

lim ., (W(f) a,-gg(W(g;Z) = W(g)) _ ﬁ/E (V28N p(y)y V2R gy (36)

Remark
No nor arguments are used.
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