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Hilbert Spaces

e We consider a free nonrelativistic spinless particle
minimally coupled to the quantized radiation field.

e The Hilbert space of the model is

H =be @ Fpn, b :=L3(RY) = H~LBRY Fp),

o0
Fon = CQ & @Po>™", bon = LA(R® x Z,).
n=1

e On F,;, we have the usual CCR, i.e.,

[ak7ak’] = [32732/] =0,
lak,ap] =0k —K), afQl =0,

Vk = (k,7), k' = (K,7') € R® x Zy, with vacuum Q € Fy.
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Hamiltonian

e The Hamiltonian H, A := H; 5 is given by
1 - 2o
Hon = 5= {1 V5 + VaAr(X)}" + Hon
Me)
on D C H, where

Hon = /|k| a, ax K,

; P ey & dk
An(X) = e—/k-xa* e/k~xa €k
") /m{ ket e @

e m. = 1 is the electron mass, and

0 < a < 1 fine structure constant,
1< AN <oo UV Cutoff.
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Polarization Vectors and One-Photon Space

o The magnetic vector potential Ax(X) can be written as

ANX) = a*(Gx) + a(Gyx), with

<o Mk S N) & e kX
Gilk) = (27)3/2|K|1/2

o Here, {¢k, &k_, %} C R3 is an ONB, for all k # 0,

e According to Maxwell theory, the one-photon space
consists of divergence-free vector fields,

—

by = {fe PR3 C3)|vk: k- f(k)=0},
but the CCR become very complicated to express for %th
and it is customary to use by, ~ h;h instead and write
f(k) = fi 4k + + &k, for some fixed measurable
choice of &+ | k.
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Ground State Energy 1

e The ground state energy of the system is
Exs(a, ) = inf { (W [HoaW) [ W e R, W] =1} > 0.

e For fixed A < oo, many results have been derived in the
past 30 years, e.g.,
- self-adjointness and domain of H, A
[Hiroshima 99, Hasler+Herbst 10] or

- existence of ground states of H, A
[Griesemer+Lieb+Loss 00, B+Chen+Frohlich+Sigal 06].
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Ground State Energy 2

e Physics require A = oo, but H, A > 0 is a well-defined
operator (with a dense domain) only for A < cc.

e One is hence interested in the UV limit A — oco. This is a
difficult problem that has been considered for various
approximative models, e.g.,

- the Nelson model [Gross 62, Nelson 64],
- the Fréhlich Hamiltonian
[Griesemer+Linden 19, Lampart 20], and

- effective mean-field theories
[Hainzl+Lewin+Solovej 07, Gravejat+Lewin+Séré 09, 18].
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Lieb-Loss Model

¢ Joint work with Alexander Hach.
e The Lieb-Loss energy is defined by

ELL(Oé,/\) =
inf {Ean(6,0) [ 6 € b, v € Fon, N8l = 101l =1}

where

EaN(@,¥) = (0 @Y |Han(¢ @ 1))

1,2 o
= S9¢]3 + (] (i, {3 ah)e) .

(67

Hip, V] = Hpn + 5 /p(x)ﬁf\(x) d3x+¢&/V(x)-ﬁA(x) d®x.
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Bounds on Lieb-Loss Energy

e Thm 1 [Lieb+Loss 99]: There are 0 < Cy, Co> < oo such
that

Cya'2N2 < Ey(a,N) < Ep(a,A) < Coa®/T A2/,

e Second-order perturbation theory about ¢g ® Q yields
Egs(c, ) ~ CaN?, so Thm 1 implies that perturbation
theory is misleading.

e Thm 1 does not take mass renormalization me; = me(A)
into account, and it cannot be used to compute
counterterm explicitly.

e Lieb + Loss have extended Thm 1.

e related to Polaron Model [Griesemer+Magller 10] and recent
results in [Breteaux+Faupin+Payet 22].
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New Result

e Introduce an auxiliary functional

87r\f

1,5
Fi(0) = 5[V + =5 lIels

for ¢ € Y := H'(R®) N L' (R3). We show that

Fi = inf{F(¢)|ocY, glla=1} > 0,

e Thm 2 [B+Hach 11]: There is C < oo and § > 0 such that

ELL(a, /\)

6 A—66
7/__10[2/7/\12/7 — 1] < Ca’N™.
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Conserved Total Momentum 1

e The Hamiltonian H, A commutes with the total momentum
operator P, = —iVy + Py, where

P — /Ra;akdk

is the photon field momentum operator. Hence Py, and
H, A can be diagonalized simultaneously.

e This is implemented by a suitable unitary operator
U: L2(RS; Fon) — LZ(Rg; Fph) Which yields

D
UH AU = / Haa(B) &,
RP

R O
Hon(P) = E{Pph -p+ \/5/‘\/\(0)}2 + Hph -
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Conserved Total Momentum 2

e Recall that the direct integral representation
M = [® m(p) d®p of an operator M on L2(R3; §) means
that [My](p) = m(p)¥(p), for all ¢ € L*(R?; F).

e By unitarity of U, we have that

Eus(a, N) = inf {o[Han]} = inf{o[UH.aU*]}
= qinfs {infa[H.A(P)]} -
PER

o Ey(a,N) = infU[Ha’A(ﬁ)] is plausible, but not proved.
o Note that H, A(P) is not quadratic in the fields,

2Han(B) = P3 +2Vahn(0) - Py +
N——

~~
deg=4 deg=3

2\/ap - Py + An(0)2 + 2Hy, +2y/ap - Ar(0) + B2 .
deg=2 degr:1 deg=0
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BHF Approximation

e Joint work with Matthias Herdzik.

o We cannot explicitly compute inf o[H, A(P)], SO We
approximate it by the BHF energy

EBHF(avAvﬁ)
= inf { Tr [p Ha A (P)] ‘ p>0,Tr(p)=1, pis quasifree}
p

> inf { Tt [p Houn(B)] | 9> 0, Tr(p) =1} = infolHaa(B)].

e BHF energy was defined in [B+Breteaux+Tzaneteas 13],
and it was shown that

Esnr(o,A.B) = inf { (2] Up W; Hon(B) W, UsQ) |

where Ug and W,, vary over all (hom.) Bogoliubov
transformations and all Weyl operators, resp.
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Bogoliubov Transformations

o More explicitly, for a fixed antiunitary involution J on b,
Ug Wy a'(f) W, Ug = a"(uf) + a(Jvf) + (n|f),
where B = B(u, v) = ({17 fulfills v € £2(b;n) and

B*(591)B = 5(891)3* = (591)-

e The BHF energy at § = 0 becomes the infimum of the BHF
energy functional

Esur = Egur(o,A,0) = ulf‘}fn {Esurlu, vin]},

Epnr[u, vin] = (Q[Up W;;Ha,/\(a) W, UpQ) .
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BHF Energy Functional for g = 0

e Working out the expectation value, one obtains
[B+Breteaux+Tzaneteas 13, Herdzik 22]

Eur(U, Vin] = <Q|U§W;Ha,/\(6) W, Us?)
3 2
=3 Z (Telk vVl + (nlkom) +2Re(n|G) )

3
Z{Tr[ (v*Juk,)?] + Trlk, v* vk, (1 + v*V)]

I\) \

+ (G, + kl(1+2v'V)(G, + ko)) |

+ Tr (|k|v*v) + (n| |k|n) .
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New result on the BHF Energy for g = 01

e Thm 3 [B+Herdzik 23]: Choose the antiunitary
J  bon — bpn as [JY](k, £) := ¢(k, £). Then

Epnr =
inf {5BHF[\/ 1+ v2, vin ‘V € L%(bpn), V>0, n € hph} ;
and

EBHF[V 1+ V2, V; 77] = Tr(|k’V2) + <77| |k|7]>
3
+ 1 > { —Tr [(k,v/1 + v2)?] + Trlk, vk, (1 + v2)]

2

v=1

+ (G + knl(VT+ V2= V)G, + ko)) |

3
+ % > (Tr[k,,vz] + (nlkn) + 2Re<77|G”>>2 ‘

v=1
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New result on the BHF Energy for g = 02

e Using the parametrization v = 2\/% one sees that
/ z+2
T+ve=32%,

veLi(bp), v>0 & z€L3bm), 2>0,
and that the functional simplifies to

gBHF[Z; n] = gBHF[zm 2\/@\/1_’_7‘/2 77]
1
= 2T (K221 +2)7") + (n] |kl m)
1S B
+4Z_;{Tr[(1+2)ky(1+z) Tk, — K]

(G + kol (1 +2)7 (G + o)) )

3
+%Z (37 [k 22(1 +2)7"] + olkon) + 2Re(n|Gy))
v=1
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New result on the BHF Energy for g = 02

e So, we have

Epur = inf {gBHF[Z; n] ‘Z € L3(bpn), 2>0,n € hph}a

o Observe that Egup[JzJ; Jn] = Epurlz; 7). We conjecture that
Egur = inf {ggHF[z; ull ’z c £2(hph), z=JzJ>0,n=Jdne hph} )

e If z=JzJ and n = Jn then gBHF[z; n] assumes the simpler

form
Sur[z;n] = %Tr(!k\zzﬁ +Z)_1) + (n| [kl n)
3

+ (G + kol (142G + k) |

and the optimal n = n[z] can be computed by completing
the square.
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