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Hilbert Spaces

• We consider a free nonrelativistic spinless particle
minimally coupled to the quantized radiation field.

• The Hilbert space of the model is

H =hel ⊗Fph , hel := L2(R3
x) ⇒ H ≃ L2(R3

x ;Fph) ,

Fph = CΩ ⊕
∞⊕

n=1

h
⊗symn
ph , hph = L2(R3 × Z2) .

• On Fph we have the usual CCR, i.e.,

[ak ,ak ′ ] = [a∗
k ,a

∗
k ′ ] = 0,

[ak ,a∗
k ′ ] = δ(k − k ′) , akΩ = 0 ,

∀ k = (k⃗ , τ), k ′ = (k⃗ ′, τ ′) ∈ R3 × Z2, with vacuum Ω ∈ Fph.
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Hamiltonian

• The Hamiltonian Hα,Λ := H∗
α,Λ is given by

Hα,Λ :=
1

2mel

{1
i ∇⃗x +

√
αA⃗Λ(x⃗)

}2
+ Hph

on D ⊆ H, where

Hph =

∫
|k | a∗

k ak d3k ,

A⃗Λ(x⃗) =

∫
|k |≤Λ

{
e−i k⃗ ·⃗xa∗

k + ei k⃗ ·⃗xak
} ε⃗k

|k |1/2
dk

(2π)3/2 ,

• mel = 1 is the electron mass, and

0 < α≪ 1 fine structure constant,
1 ≪ Λ <∞ UV Cutoff.
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Polarization Vectors and One-Photon Space

• The magnetic vector potential A⃗Λ(x⃗) can be written as

A⃗Λ(x⃗) := a∗(G⃗x) + a(G⃗x) , with

G⃗x(k) :=
1(|k | ≤ Λ) ε⃗k e−i k⃗ ·⃗x

(2π)3/2|k |1/2 .

• Here,
{
ε⃗k ,+ , ε⃗k ,− ,

k⃗
|k⃗ |

}
⊆ R3 is an ONB, for all k⃗ ̸= 0⃗,

• According to Maxwell theory, the one-photon space
consists of divergence-free vector fields,

h′ph =
{⃗

f ∈ L2(R3;C3)
∣∣∀ k⃗ : k⃗ · f⃗ (k⃗) ≡ 0

}
,

but the CCR become very complicated to express for H′
ph,

and it is customary to use hph ≃ h′ph instead and write

f⃗ (k) = fk ,+ε⃗k ,+ + fk ,−ε⃗k ,−, for some fixed measurable
choice of ε⃗k ,± ⊥ k⃗ .
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Ground State Energy 1

• The ground state energy of the system is

Egs(α,Λ) := inf
{
⟨Ψ |Hα,ΛΨ⟩

∣∣∣ Ψ ∈ H, ∥Ψ∥ = 1
}

≥ 0 .

• For fixed Λ <∞, many results have been derived in the
past 30 years, e.g.,

- self-adjointness and domain of Hα,Λ

[Hiroshima 99, Hasler+Herbst 10] or
- existence of ground states of Hα,Λ

[Griesemer+Lieb+Loss 00, B+Chen+Fröhlich+Sigal 06].
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Ground State Energy 2

• Physics require Λ = ∞, but Hα,Λ ≥ 0 is a well-defined
operator (with a dense domain) only for Λ <∞.

• One is hence interested in the UV limit Λ → ∞. This is a
difficult problem that has been considered for various
approximative models, e.g.,

- the Nelson model [Gross 62, Nelson 64],
- the Fröhlich Hamiltonian

[Griesemer+Linden 19, Lampart 20], and
- effective mean-field theories

[Hainzl+Lewin+Solovej 07, Gravejat+Lewin+Séré 09, 18].
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Lieb-Loss Model

• Joint work with Alexander Hach.
• The Lieb-Loss energy is defined by

ELL(α,Λ) :=

inf
{
Eα,Λ(ϕ, ψ)

∣∣∣ ϕ ∈ hel , ψ ∈ Fph , ∥ϕ∥ = ∥ψ∥ = 1
}
,

where

Eα,Λ(ϕ, ψ) := ⟨ϕ⊗ ψ |Hα,Λ(ϕ⊗ ψ)⟩

=
1
2
∥∥∇⃗ϕ∥∥2

2 +
〈
ψ
∣∣∣ H(

|ϕ|2, Im{ϕ ∇⃗ϕ}
)
ψ
〉
F
,

H[ρ, v⃗ ] := Hph +
α

2

∫
ρ(x) A⃗2

Λ(x)d3x +
√
α

∫
v⃗(x) · A⃗Λ(x)d3x .
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Bounds on Lieb-Loss Energy

• Thm 1 [Lieb+Loss 99]: There are 0 < C1,C2 <∞ such
that

C1 α
1/2 Λ3/2 ≤ Egs(α,Λ) ≤ ELL(α,Λ) ≤ C2 α

2/7 Λ12/7 .

• Second-order perturbation theory about ϕ0 ⊗ Ω yields
Egs(α,Λ) ∼ CαΛ2, so Thm 1 implies that perturbation
theory is misleading.

• Thm 1 does not take mass renormalization mel ≡ mel(Λ)
into account, and it cannot be used to compute
counterterm explicitly.

• Lieb + Loss have extended Thm 1.
• related to Polaron Model [Griesemer+Møller 10] and recent

results in [Breteaux+Faupin+Payet 22].
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New Result

• Introduce an auxiliary functional

F1(ϕ) :=
1
2
∥∥∇⃗ϕ∥∥2

2 +
8π

√
2

3
∥ϕ∥1 ,

for ϕ ∈ Y := H1(R3) ∩ L1(R3). We show that

F1 := inf
{
F(ϕ)

∣∣ ϕ ∈ Y , ∥ϕ∥2 = 1
}
> 0 ,

• Thm 2 [B+Hach 11]: There is C <∞ and δ > 0 such that∣∣∣∣ ELL(α,Λ)

F1α2/7Λ12/7 − 1
∣∣∣∣ ≤ C αδ Λ−6δ .
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Conserved Total Momentum 1

• The Hamiltonian Hα,Λ commutes with the total momentum
operator P⃗tot = −i∇⃗x + P⃗ph, where

P⃗ph =

∫
k⃗ a∗

k ak dk

is the photon field momentum operator. Hence P⃗tot and
Hα,Λ can be diagonalized simultaneously.

• This is implemented by a suitable unitary operator
U : L2(R3

x ;Fph) → L2(R3
p;Fph) which yields

U Hα,Λ U∗ =

∫ ⊕

R3
p

Hα,Λ(p⃗) d3p ,

Hα,Λ(p⃗) =
1
2
{

P⃗ph − p⃗ +
√
αA⃗Λ(0⃗)

}2
+ Hph .
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Conserved Total Momentum 2

• Recall that the direct integral representation
M =

∫ ⊕ m(p)d3p of an operator M on L2(R3;F) means
that [Mψ](p) = m(p)ψ(p), for all ψ ∈ L2(R3;F).

• By unitarity of U, we have that

Egs(α,Λ) = inf
{
σ[Hα,Λ]

}
= inf

{
σ[U Hα,ΛU∗]

}
= inf

p⃗∈R3

{
inf σ[Hα,Λ(p⃗)]

}
.

• Egs(α,Λ) = inf σ[Hα,Λ(0⃗)] is plausible, but not proved.
• Note that Hα,Λ(p⃗) is not quadratic in the fields,

2 Hα,Λ(p⃗) = P⃗ 2
ph︸︷︷︸

deg=4

+2
√
αA⃗Λ(0⃗) · P⃗ph︸ ︷︷ ︸

deg=3

+

2
√
αp⃗ · P⃗ph + A⃗Λ(0⃗) 2 + 2Hph︸ ︷︷ ︸

deg=2

+2
√
αp⃗ · A⃗Λ(0⃗)︸ ︷︷ ︸
deg=1

+ p⃗ 2︸︷︷︸
deg=0

.
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BHF Approximation

• Joint work with Matthias Herdzik.
• We cannot explicitly compute inf σ[Hα,Λ(p⃗)], so we

approximate it by the BHF energy

EBHF(α,Λ, p⃗)

:= inf
{

Tr
[
ρHα,Λ(p⃗)

] ∣∣∣ ρ ≥ 0 , Tr(ρ) = 1 , ρ is quasifree
}

≥ inf
{

Tr
[
ρHα,Λ(p⃗)

] ∣∣∣ ρ ≥ 0 , Tr(ρ) = 1
}

= inf σ[Hα,Λ(p⃗)] ,

• BHF energy was defined in [B+Breteaux+Tzaneteas 13],
and it was shown that

EBHF(α,Λ, p⃗) = inf
η,B

{〈
Ω
∣∣U∗

B W ∗
η Hα,Λ(p⃗)Wη UBΩ

〉}
where UB and Wη vary over all (hom.) Bogoliubov
transformations and all Weyl operators, resp.
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Bogoliubov Transformations

• More explicitly, for a fixed antiunitary involution J on hph,

U∗
B W ∗

η a∗(f )Wη UB = a∗(uf ) + a(Jvf ) + ⟨η|f ⟩ ,

where B ≡ B(u, v) =
( u jvj

v juj

)
fulfills v ∈ L2(hph) and

B∗ ( 1 0
0 −1

)
B = B

( 1 0
0 −1

)
B∗ =

( 1 0
0 −1

)
.

• The BHF energy at p⃗ = 0⃗ becomes the infimum of the BHF
energy functional

EBHF ≡ EBHF(α,Λ, 0⃗) = inf
u,v ;η

{
EBHF[u, v ; η]

}
,

EBHF[u, v ; η] := ⟨Ω|U∗
BW ∗

η Hα,Λ(0⃗)WηUBΩ⟩ .
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BHF Energy Functional for p⃗ = 0⃗

• Working out the expectation value, one obtains
[B+Breteaux+Tzaneteas 13, Herdzik 22]

EBHF[u, v ; η] = ⟨Ω|U∗
BW ∗

η Hα,Λ(0⃗)WηUBΩ⟩

=
1
2

3∑
ν=1

(
Tr[kνv∗v ] + ⟨η|kνη⟩+ 2 Re⟨η|Gν⟩

)2

+
1
2

3∑
ν=1

{
Tr[(v∗Jukν)2] + Tr[kνv∗vkν(1 + v∗v)]

+ ⟨Gν + kνη|(1 + 2v∗v)(Gν + kνη)⟩
}

+ Tr
(
|k |v∗v

)
+
〈
η
∣∣ |k |η〉 .
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New result on the BHF Energy for p⃗ = 0⃗ 1

• Thm 3 [B+Herdzik 23]: Choose the antiunitary

J : hph → hph as [Jψ](k⃗ ,±) := ψ(k⃗ ,±). Then

EBHF =

inf
{
EBHF

[√
1 + v2 , v ; η

] ∣∣∣v ∈ L2(hph), v ≥ 0, η ∈ hph

}
,

and

EBHF
[√

1 + v2, v ; η
]
= Tr

(
|k |v2)+ 〈

η
∣∣ |k |η〉

+
1
2

3∑
ν=1

{
− Tr

[(
kνv

√
1 + v2

)2]
+ Tr[kνv2kν(1 + v2)]

+ ⟨Gν + kνη|(
√

1 + v2 − v)2(Gν + kνη)⟩
}

+
1
2

3∑
ν=1

(
Tr[kνv2] + ⟨η|kνη⟩+ 2 Re⟨η|Gν⟩

)2
.
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New result on the BHF Energy for p⃗ = 0⃗ 2

• Using the parametrization v = z
2
√

1+z
, one sees that

√
1 + v2 = z+2

2
√

1+z
,

v ∈ L2(hph), v ≥ 0 ⇔ z ∈ L2(hph), z ≥ 0 ,

and that the functional simplifies to

ẼBHF[z; η] := EBHF
[ z+2

2
√

1+z
, z

2
√

1+z

√
1 + v2; η

]
=

1
4

Tr
(
|k | z2 (1 + z)−1)+ 〈

η
∣∣ |k | η〉

+
1
4

3∑
ν=1

{
Tr

[
(1 + z) kν (1 + z)−1kν − k2

ν

]
+ ⟨Gν + kνη| (1 + z)−1(Gν + kνη)⟩

}
+

1
2

3∑
ν=1

(
1
4 Tr

[
kν z2 (1 + z)−1]+ ⟨η|kνη⟩+ 2 Re⟨η|Gν⟩

)2
.
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New result on the BHF Energy for p⃗ = 0⃗ 2

• So, we have

EBHF = inf
{
ẼBHF[z; η]

∣∣∣z ∈ L2(hph), z ≥ 0, η ∈ hph

}
,

• Observe that ẼBHF[JzJ; Jη] = ẼBHF[z; η]. We conjecture that

EBHF = inf
{
ẼBHF[z; η]

∣∣∣z ∈ L2(hph), z = JzJ ≥ 0, η = Jη ∈ hph

}
.

• If z = JzJ and η = Jη then ẼBHF[z; η] assumes the simpler
form

ẼBHF[z; η] =
1
4

Tr
(
|k | z2 (1 + z)−1)+ 〈

η
∣∣ |k | η〉

+
1
4

3∑
ν=1

{
Tr

[
(1 + z) kν (1 + z)−1kν − k2

ν

]
+ ⟨Gν + kνη| (1 + z)−1(Gν + kνη)⟩

}
,

and the optimal η ≡ η[z] can be computed by completing
the square.
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