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Introduction

Manifold (M, G) M = KU (M \ K) with M \ K infinite end and dimension n > 3.
We make assumptions on the asymptotic behaviour of the metric on M \ K.

M\ K
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Introduction

Manifold (M, G) M = K U (M \ K) with M \ K infinite end and dimension n > 3.

We make assumptions on the asymptotic behaviour of the metric on M \ K.

M\ K
K

n

Example: Writing x = rw withr = |x|, w = \;T we can represent R” with
R? ~ ((0,00) x ™, dr? + r?do)

and R” outside of a compact obstacle with ((R, o0) x §"~1, dr? + r2do).
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Introduction

Manifold (M, G) M = K U (M \ K) with M \ K infinite end and dimension n > 3.

We make assumptions on the asymptotic behaviour of the metric on M \ K.

M\ K
K

—
7

n
More generally, instead of the sphere we can consider (S, g(r)) where g(r) is
perturbation of a fixed metricgon S.

M\ K ~ ((R, ) x S, dr* + r*g(r)).

We say then that M is asymptotically conical .
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Introduction

Remark: We can actually write the metric in a more general form
dr* +1(r)~*g(r)
where

I'(ry _ ¢ 1 -~
>- ¢>0 (forex.I(r)=r"",I(r)=¢e"").
B 27 ©>0 (orecln=rTin=e")
This allows to include the asymptotically conical and asymptotically hyperbolic cases at
the same time.

o) = -

On M we can consider the Laplace-Beltrami operator Py. The operator is
selfadjoint, hence
(Po—2)7"

is well defined forany z € C \ R*.
We are interested in the study of the boundary value of the resolvent

(Po — N +i0)™" := lim(Po — \? +ig) ™"
e—0
that is when the spectral parameter z = \? — je approaches the resolvent set.
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We want to obtain uniform estimates when ¢ — 0.

Example: On R3 we can write the integral kernel of the resolvent, to bound the resolvent we
would need to evaluate the L2 norm of

iz|x—y| elRez|x—y|
A — 22T (x) = € dy / 7Imz\x yls y)dy
( )7 () i1 y‘ e f()

this produces a bound in |Imz|~" when regarded as an operator on L?.

More in general, we recall that

Py —2z)~" < —
(Po —2)" [liz2 < limz]

so there is no hope to obtain uniform bounds in ¢ just in L2.

The right operator topology to consider is the one of operators on weighted L2
spaces
L2 = L%((x)°dx), s> 1/2.

We can study (Py — A% +i0)~" as an operator of B(LZ, L% ), which translates on
L2 bounds on
(X) "3 (Po — A2 +i0) 7" (x) "
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Why is the limit ¢ — 0 interesting?

e Writing functional calculus via the spectral measure and then using Stone’s

formula
gitPo / eith dEp, (\)
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Why is the limit ¢ — 0 interesting?

e Writing functional calculus via the spectral measure and then using Stone’s
formula

e = / e™ dEp,(\) = / e™Im(Py — A2 +i0) " dx

if we have an L? bound on Im(Py — A? +i0) " in B(LZ, L% ;) we can obtain
time decay estimates on (x) ~Se™0 (x) .
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Why is the limit ¢ — 0 interesting?

e Writing functional calculus via the spectral measure and then using Stone’s
formula

eifPO _ /eit)\ dEPU(A) _ /eit)\lm(PO o )\2 _|_IO)—1 d)\

if we have an L? bound on Im(Py — A? +i0) " in B(LZ, L% ;) we can obtain
time decay estimates on (x) ~Se™0 (x) .

o Strichartz estimates for e""o*V) hold if |V|'/2 is (Py + V)-smooth
(Rodnianski-Schlag '03).
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Why is the limit ¢ — 0 interesting?

e Writing functional calculus via the spectral measure and then using Stone’s
formula

oo _ /em dEp, (\) = /eitAIm(PO ~ X2 4i0)7"dA

if we have an L* bound on Im(Py — A* +i0) " in B(L3, L% ) we can obtain
time decay estimates on (x) ~*e™0 (x) .

e Strichartz estimates for e""o*V) hold if |V|'/2 is (Py + V)-smooth
(Rodnianski-Schlag '03). If V = O((x) %), |V|"?is (Po + V)-smooth if we
have an L? bound on

10075 (Po + V = A £10) "2, 2
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Why is the limit ¢ — 0 interesting? il

e Writing functional calculus via the spectral measure and then using Stone’s
formula

gPo — /eiv\ dEp, (\) = /eitAIm(Po Y —|—i0)_1 d\

if we have an L? bound on Im(Po — A* +i0) " in B(L3, L2 ) we can obtain
time decay estimates on (x) ~Se™0 (x) .

e Strichartz estimates for e""o*V) hold if |V|'/2 is (Py + V)-smooth
(Rodnianski-Schlag '03). If V = O((x) %), |V|"/?is (Po + V)-smooth if we
have an L? bound on

100 ™2(Po +V = A% £10) "2, 2.

o Asymptotic expansion of the spectral shift function holds if (Po — A? +i0)~"
has bound 0(e®*) in the B(L2, L2 ) topology (Robert '94).
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Why is the limit ¢ — 0 interesting?

e Writing functional calculus via the spectral measure and then using Stone’s
formula

gltPo — /em dEp, (M) = /eitAlm(PO Y. +i0)71 dX\

if we have an L? bound on Im(Py — A* +i0) " in B(LZ, L% ) we can obtain
time decay estimates on (x) ~Se"Po (x) .

e Strichartz estimates for e*o*V) hold if |V|'/2 is (Py + V)-smooth
(Rodnianski-Schlag '03). If V = 0((x)~%), |V|"/? is (Po 4 V)-smooth if we
have an L? bound on

100~ (Po +V = A2 £ 10) "2 2.

e Asymptotic expansion of the spectral shift function holds if (Po — A2 +i0) "
has bound 0(e®*) in the B(LZ, L% ) topology (Robert '94).
(Idea: integrate (P — z) " on an exponentially small stripe in a contour
deformation argument.)
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Question

We will be interested in a perturbation of the Laplace-Beltrami operator Py.
To define Py on M we use the quadratic form
<DGU, DGV>L2(M)

where Dg is the gradient induced by the metric on M. We modify this quadratic
form by taking Dg — A with A a decaying vector field.

We then obtain the magnetic Laplacian P on (M, G) via the quadratic form
<(DG - A)U7 (DG — A)V>L2(M)'
In P we can also include a decaying potential (long range).

We will then consider
(P— N +ig)™"

when £ — 0 in the appropriate weighted spaces.
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References for the Laplacian with a potential

OnR":
¢ When no trapped geodesics: bound in O(A\~") with weights (x)~"/2—*
(Robert-Tamura ‘88, Wang ‘88, Gerard Martinez '89)
e When some trapping is allowed: outside of an obstacle (lkawa '85)

On non compact manifolds:

o At worse: 0(e®*) (Burqg '98 outside of an obstacle, Burq ‘02 long range
potential)
o Atbest: O(\~") (Cardoso-Vodev '02)

o With some trapping: O(A~"/2log \) (Nonnenmacher-Zworski ‘09, Datchev
'09) O(A~?), o < 1(Christianson-Wunsch "13)
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e Obtain estimates in the case of the perturbed operator P.

e Optimise the weights in considering decaying weights of strenght —1/2 in
Besov-like spaces (as suggested from results on R", Agmon-Hérmander
'76).
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e Obtain estimates in the case of the perturbed operator P.

e Optimise the weights in considering decaying weights of strenght —1/2 in
Besov-like spaces (as suggested from results on R", Agmon-Hérmander
'76).

e Have a control for all high frequencies A > 1to which other approaches,
like Mourre theory, are not well adapted if no assumption is added.

Example: The main assumption of Mourre theory is a positive commutator estimate. On
R" one exploits the property

=4, Al = 2(~A)

where A is the generator of dilations A = %. For more general operators one can
hope to obtain for the suitable .4

¢(P)ilP, Alp(P) > ¢*(P)P + $(P)K¢(P).

The remainder ¢(P)K¢(P) can be treated with additional assumptions.
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e Obtain estimates in the case of the perturbed operator P.

e Optimise the weights in considering decaying weights of strenght —1/2 in
Besov-like spaces (as suggested from results on R", Agmon-Hérmander
'76).

e Have a control for all high frequencies A > 1to which other approaches,
like Mourre theory, are not well adapted if no assumption is added.

Perspectives:

e Possibly push forward the frequency independent approach of the first part
of the work to obtain estimates for all intermediate and high frequencies.
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One of the goals is improving the weights.
We recall that at infinity the manifold is of the form
((R, +o0) x S, dr* +r*g(r)),
the unbounded direction is the radial one, hence the weight will be Y2,
In the region (R, +00) x S
1. we partition (R, +c0) in dyadic intervals [2¢—, 2€7],
2. on [277, 2" we consider ||r'/?V| 2(gag 2 —1<r<2k+1)

3. take the ¢' norm of the sequence at step 2.

This defines
1/2
IVlleor = Z Hr/ VHLZ(drdg,Z“—1§r§2‘<+1)'
k>kg
For the dual norm we replace
/20 12 g g

and obtain
_ =1/2
IVllez, = I(S;IZ ™"Vl 2(drdg,2k—1 << 2k+1y
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Result

Theorem (V.G. '23)

Letu € HZ (M), A > 1,
Xg := (R, +00) X S
and Ry > R. There exists a constant C > 0 independent of A and e sucht that
—il @ 2
ull v ey + ||UHH1,B*>R SO(ATe)||(P— A"+ ’€)U||L2(M\XR1)
+O0(A )P — N +ie)ullp

where [|ul[ 41 g« . includes the norms of u and of its derivatives.
>

Comments:

e Aboundon HUHH1,B*>R implies the more common bound on L? weighted
spaces with weight r="/2—#,

e Unlike Vodev ('02) and Cardoso, Vodev ('02) we include perturbations of
order one.

e The first part of our proof is not restricted to the high frequency regime .
e We do not allow cusps.
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To be more precise, what we can prove is

HU||L2(M\XR1) + O(eAC)HuHB;R <O\ T'e)|(P— A + iE)u||L2(M\XR1)

+O0ATe)I(P— A +ie)ullsp

where M\ Xg, is a bounded region. For a function supported at infinity we can
simplify the exponential factors.
Hence if we cut away from the compact portion of M we obtain a bound in
oM.
Corollary (Cutoff resolvent V.G. '23)

Let A > 1. There exists Ry > R and x a smooth cutoff on Xz, = (Ry, +-00) x S such that
foralle > 0 ) ] ‘
IX(P =A% +ie)~ Xl —B5, < o(x™")

in particular
Ir=Y/278x(P = A2 +ie) V2|22 < O(ATY).
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We can directly see that the Bz, — B, bounds imply the L12/2+u — qu/zfu
ones.

We can just use the inclusions

L12/2+u(" > Ry) <= Bugr,, Big — L2—1/2—#(" > Ry).
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We can directly see that the B-g, — B, bounds imply the L35, , — L, ,_,
ones.

We can just use the inclusions
L3/20,(r > Ri) < Bspy,  Big, = L245 ,(r > R1).
On the region (Rq, +00) x S we can partition (Ry, +0o0) in dyadic intervals
(2k47 2k+1)

where r=# < 2#01=K)_

We can use this partition to split the L? norm of r="/2=#f
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We can directly see that the B>, — B%p, bounds imply the L, , — L%, ,,_,
ones.

We can just use the inclusions
L3/24u(r > R1) <> Bsgy, Big < L2145 ,(r>Ry).
On the region (Rq, +00) x S we can partition (Ry, +0o0) in dyadic intervals
(2k71 2k+1)
where r—# < 2006,

We can use this partition to split the L? norm of r="/2=#f

12— 1-k) || —1/2
IIr / “Fll2(rdg,r>ry) < Z 24 )Hr / Il 2 drag, 24— <r< 21y
K>k

—1/2 1—k
<sup ||r / fHLZ(drdg,Zk*1§r§2k+1) Z 2170 < 0(1)Hﬂ|8*>R °
k>kq K>k U
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We can directly see that the B>, — B%p, bounds imply the L, , — L%, ,,_,
ones.

We can just use the inclusions
L3/20,(r > Ri) = Bsp,,  Bip, = L%45 ,(r > Ry).
On the region (Rq, +00) x S we can partition (Rq, +0o0) in dyadic intervals
(2k47 2k+1)
where r—# < 200,

We can use this partition to split the L? norm of r—"/2=#f

—1/2— 1—k —-1/2
lIr / T\l 2(arag,r>ry) < Z 2 )Hr 4 Fll 2 (drg, 2% —1 <r<2k+1)
k>kq

—1/2 1—k
SE;’E lIr / f||L2(drdg,2k*1§r§2k+1) Z 2 )S 0(1)Hf|\B;R1-
204

k>kq
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Strategy

1. On M\ K bound u by (P — X% + ie)u
up to a small term.

Byproduct: the H' norm of u over a
compact set (because we have no
semiclassical parameter )

. On K use Carleman estimates to
bound u by (P — \? + ie)u.

Byproduct: the H' norm of u over a
compact set. The term is of
exponential size in \.

. We bound the exponentially large
remainders thanks to a
A-dependent weight.

Remark: Only in step 3 we need to use the assumption A > 1.
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Step 1: Estimates on the infinite end
(Any frequency \ > \q)



In this part we consider the region

((R, +00) x S, dr* + r*g(r)).

We find that for any § € (0, 1) there exists c(§) > 1and a compact subset K(¢) of
(R, +00) x S such that

ulli gz, < O AP = ¥ +ie)ullg,, + 0 lullyr s , + C(Oulln ks

for all u € H*(M).

Here || - HH‘I’B;R is a shorthand for the BZ ; norms of u, of its radial derivative and
of its angular derivative.
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In this part we consider the region
((R, +00) x S,dr* + r’g(r)).

We find that for any § € (0, 1) there exists c(é) > 1and a compact subset K(4) of
(R, +00) x S such that

Hu||H1,B’;R <O AP - A2+ ie)ull., + O(§)I|UHH1,B*>R + c(O)lull ko))

for all u € H*(M).

Here || - H,_,LB;R is a shorthand for the BZ ; norms of u, of its radial derivative and
of its angular derivative.

We use the result with a small enough § in order to absorb the term on the right
hand side.
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In this part we consider the region

((R, +00) x S, dr* + r*g(r)).

We find that for any § € (0, 1) there exists c(§) > 1and a compact subset K(¢) of
(R, +00) x S such that

ullig gz, < O AP = X +ie)ullg,, + 0 luller s , + C(O)ull (k(s))

for all u € H*(M).

Here || - HH1’B;R is a shorthand for the BZ ; norms of u, of its radial derivative and
of its angular derivative.

We use the result with a small enough ¢ in order to absorb the term on the right
hand side.

Byproduct of step 1.
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Remark: The additional term on K(0) is necessary to get the the absorbable term O(¢).

Why? A~ is not necessarily small (A > Xo only). In a way, we have no
semiclassical parameter available that can give us the smallness we want in §.

Fix: We can recover smallness thanks to decaying factors r= with v > 0
provided r is large enough.

LMK (2 Xe)

4

ik)

/

Q ( [V
Ris) #«l

In other words, the norm for r > R(4) contributes to the term O(4) and the norm
for R <r < R(0) is the contribution of K(9).
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Step 2: Estimates on bounded region
(Any frequency \ > \q)



From
lullfa s , < O™ AP — A +ie)ulls., +O(8)ullén o=, + C(O)ullEn ik
we fix §g € (0, 1) such that O(dp) < 1and after moving 0(6)||u\|f,178*>R to the left
we have
Hu||H1,B*;R <O HIIP - A7+ ie)ulla., + OMIUllmk(so))»

This bounds the norm of u on Xz = (R, +¢) x S.

For the remaining compact region we use a consequence of Carleman estimates
due to Lebeau and Robbiano ('95). This gives the exponential factors 0(e*°).
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Proposition (Interpolation inequality G.L.-L.R. '95, G.L.-L.R.-J.L '22)

Let M a Riemannian manifold, 7 the Laplace-Berltrami operator on M and R a
differential operator of order one. Let o, W, V open subsets of M such that

cCcWcV, WnoMm=0.
There existc > 0,y € (0, 1) such that

IVllngwy < eVl (1T + R = 0)laqy + IVlz(y)

forany v € H2(M).

If we apply it to M = (=1,1); x Mo and v = v(t,m) = e“u(m),m € Mo
(T — 8 +R)v =e*(T + R — 2*)u(m)

which we will use with 7+ R = Pand 2> = A% — ie.
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We recall that M \ X is a compact region. From step 2 we obtain

lulliangy < OEM (P — A% + ie)ull2 v xe,) + 0(e)|ullnw)

with R, > R, U open bounded subset of Xz and v € (0, 1).

The right hand side is of the same form of the one in step 1.

<

“MXa
M\XF\I

Remark: we can choose U such that K(dp) C U so that the remainders are contained in the
same compact region.

© Viviana Grasselli
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Step 3: Combining spatial infinity and the
bounded region.

(Frequencies \ > 1)

21



Up to now we have

lullen g2, < OAT)II(P = A* + ie)ulle, + O IIullin k(s

NUllen nxgy < 0(MMI(P— X* + iE)u||L2(M\XR1) + O(e)‘/v)||u||f-ﬂ(u)-
with K(do) C U. Adding the two inequalities
lullinwmxg) + HUHH1,B*>R <O TI(P- 22+ ie)ulls.
+0(eMMII(P — A + ie)ullizxg ) + O™ )l[Ullinw)
forall A > A.
Let ¢(r) a smooth increasing function such that ¢ > 1/~ on U then
HeAMUHM(U) = ||eA(1/77(P)e>\<PUHH1(U) <0(e ™) HGWUHHWU)
1
<

becomes a small term, since A > 1. This implies that in its bound we are
allowed some remainder term, since we will be able to absorb them anyways.
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Let U" a bounded region with U c U’, we bound ||eWu|\H1(U,) by

0(e™ ) [e*ull ) <O(AT'er)|(P — N2 +i€)UI|L2(M\XR1)

+O0(ATX)|(P = N + ie)ullg., + O(e™ ) ullpyrry

with U” a bounded region in M \ Xg. We use this to conclude
-1 9 .
Ullinyxgy + 1Ullin gz, SOAT)N(P = A" +ie)ulls.,

+0(eMMI(P — A + ie)ulliznxg, ) + O™ ) l[ullinw)

© Viviana Grasselli
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Let U" a bounded region with U c U’, we bound ||eWu|\H1(U,) by

O(e_kc)”ewU”Huu') <O\ T"eX0)||(P— N2 +i€)UI|L2(M\XR1)

+O0(ATX)|(P = N + ie)ullg., + O(e™ ) ullpyrry

with U” a bounded region in M \ Xg. We use this to conclude

1 2 .
(Ul ) + ||U||H1,B;R SOAT)IP — A" +ig)ulls.p

+O(eMMI(P — N +ie)ullizxe, ) + O ) €™ Ullinwr)

© Viviana Grasselli
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Let U’ a bounded region with U C U, we bound ||€**u[|;(yr) by

0(e ) [e* ull ) <O(A'e*)|(P — N2 Jr"E)U||L2(l\/1\x,?1)

+0(AT1X)|[(P — N2 +ie)ullg , + O(e™ ) Ul

with U” a bounded region in M \ Xz. We use this to conclude
(Ul ) + ||U||H1,B;R <OATI(P— N+ ie)ulls.q
+0(eMM)|(P— X + iS)UHLZ(M\XR1) + O(eikc)HeWUHHW(w)
<O(AT'@)I(P — A? + ie)ulle..p
+ 0T )I(P — A+ ie)ullizuxg, ) + O [ullinwrry
where the norm on U” is absorbable by M \ Xz. So finally
llull i wmxq) + ||UHH1,B*>R <O )|I(P— A + ie)ulls.

+0(AT)|(P— N+ "5)UHL2(M\XR1)‘
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We recall K(dg) C U C U, so trivially the norm on K (&) can be bounded by the
one on U’. With more careful computations we find

AP —A A
e [ullin k(s < O(e™)lle™*ullmwr
thanks to the properties of ¢. Then we can bound
A AP -1 2 : —A A
e |lullin pr , <€ OAT)II(P — A" +ie)ulls., + O(e™ ") ll€™ Ulln(ury
<0\ T|[(P = A\ +ie)ulls..,
=1, B 2, Y
+0(AT NP = A +ie)ullizuxg, ) + O ) 1Ullinurry-
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We recall K(dg) C U C U, so trivially the norm on K (&) can be bounded by the
one on U’. With more careful computations we find

AP —A A
e [ullin k(s < O(&™)lle™*ulliwr
thanks to the properties of ¢. Then we can bound
A« Apx —1 2 : —A A
e |lulln pr , <€™FTOAT)II(P = A" +ie)ulls., +O(e™")l€™ Ul (wry
<0 |(P = A +ie)ulle.
—1AC A o F _
+0(A'e)||(P— A +IE)U||L2(M\XR1) + O(e AC)HUHHHU”)'
We combine the two regions by adding together ||UHL2(M\XR1) and e*? llullez , to
find
AP A -1 2
1Ullizmxe, ) + €77 [[Ullgy, <€ O(A)I(P =A% +ie)ulls.
- C 2 e
+ 0P — A +’5)U||L2(M\XR1)

+0(e™ ) 1ullnurry

© Viviana Grasselli
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We recall K(dp) C U C U, so trivially the norm on K(dg) can be bounded by the
one on U’. With more careful computations we find

—A A
e SDUHI—N(U/)

i llull ks < OCe
thanks to the properties of ¢. Then we can bound
. ) y—1 2 o .
e ||ull s , <€**OAT)I(P — X* +ie)ulls  + O(e™ )€™ Ullir(wr)
<e** 0N T)|(P - A +ie)ulls.,
—1_XC 2 . _
+O0(AT')[(P = A" + ie)ull 2w xg, ) + O ) ullinurry-
We combine the two regions by adding together ||UHL2(M\XR1) and e*¢* l|ull , to
find
Ap s Apx 1 2 :
1Ullizmxe, ) + €77 [[Ullgy, <€ O(A)I(P = A" +ie)ulls,
—1,_XC 2 :
+O0(A"eT)[[(P— A"+ IE)UHLZ(M\XR])

If uis supported at infinity away from M \ Xz, we obtain the bound O(\~") on
the cutoff resolvent.

© Viviana Grasselli
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In step 1 we had forany é € (0,1)

0l g | < O AP = A2 + ie)ul, +O@)ul , + (@)l (s

Assuming we have bounds on the norms of the radial and angular derivatives of
u, we will show how to obtain |[ul|: .. We recall

_ =1/2
||UHB*>R = E;EJ lIr u||L2(drdg,2k*1§r§2k+1)7

—1/2

hence we need to bound ||r~""“u|| ) uniformly in k. We consider

L2(drdg,2k—1<r<2k+1

h=)X" hP-1+ic.

© Viviana Grasselli
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In step 1 we had forany ¢ € (0,1)

1 5. , < OGTAB)IP = X2 + ie)ullg , + O@ulE: , +e(d)lulFrisy:

Assuming we have bounds on the norms of the radial and angular derivatives of
u, we will show how to obtain |[u|s: .. We recall

_ —-1/2
||UHB*>R = ksglz lIr u||L2(drdg,2k*1§r§2k+1)7

=/

hence we need to bound ||r="“u|| uniformly in k. We consider

L2(drdg,2k =1 <r<2k+T)
h=X" hP—1+i¢.
Let xx a cutoff on (2¢=1, 2¢*7) then
Re(xiu, (WP —1+ie')u) = —||xkul[}2 + Re(xku, h*Pu)

implies
1/2,—-1/2 2
12 2 x| 22
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In step 1 we had forany ¢ € (0,1)

1 5. , < OGTAB)IP = X2 + ie)ullg , + O@ulE: , +e(d)lulFrisy:

Assuming we have bounds on the norms of the radial and angular derivatives of
u, we will show how to obtain |[u|s: .. We recall

_ —-1/2
||UHB*>R = ksglz lIr u||L2(drdg,2k*1§r§2k+1)7

=/

hence we need to bound ||r="“u|| uniformly in k. We consider

L2(drdg,2k =1 <r<2k+T)
h=X" hP—1+i¢.
Let xx a cutoff on (2¢=1, 2¢*7) then
Re(xiu, (WP —1+ie')u) = —||xkul[}2 + Re(xku, h*Pu)

implies
k=10 ,—1/2,,112 1/2,-1/2 2
2 ||r / UHLZ(drdg,Zk*1§r§2k+1) S ||r/ r / X/(LIHL2
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In step 1 we had forany é € (0,1)
IIUH,%,LB;R <O AT)(P— A + iE)UII§>R + 0(5)HUII§*>R + 0(5)Hullf,1(,<(5))~

Assuming we have bounds on the norms of the radial and angular derivatives of
u, we will show how to obtain |[u|s- .. We recall

_ =1/2
lullsz , = ksglz Ir™" Ul 2 (drdg, 261 <r< k1),

—-1/2

hence we need to bound ||r="“u|| ) uniformly in k. We consider

12(drdg, 2k =1 <r<ok+1
h=X" h*P-1+i.
Let xx a cutoff on (2¢~1, 2¢*7) then
Re(xzu, (h*P — 1+ ig’)u) = — | xkull?2 + Re(xgu, h*Pu)
implies
2k71||r71/2u‘|fz(drdg,2k*1§r§2k+1) < |Ixeullf

= — Re(xU, xx(h*P — 1+ ic")u) + Re(xku, xch*Pu)
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In step 1 we had forany é € (0,1)
IIUH,%n,B;R <O AP — N+ iE)UII§>R + 0(5)HUII§*>R + 0(5)Hullf,1(,<(5))-

Assuming we have bounds on the norms of the radial and angular derivatives of
u, we will show how to obtain |[u|s: .. We recall

o _1/2
||UHB>R = ksglz Ir™ Ul 2 (drdg, 2k —1 <r< k1),

=/

hence we need to bound ||r="“u|| uniformly in k. We consider

L2(drdg,2k—1<r<2k+1)
h=X" hP—-1+ic.
Let xx a cutoff on (2¢=1, 2¢*7) then
Re(xzu, (h*P — 1+ ic")u) = —|xxull?2 + Re(xku, h*Pu)
implies
2k_1||r_1/2u|‘fz(drdg,2k*1§r§2k+1) < ||XkUHf2
< —Re(r " *xuu, i xi(h*P = 1+ i")u) + 2 " Re(xur " 2u, xur~ V/*h*Pu)
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In step 1 we had forany é € (0,1)

0l g | < O™ AP = A2 + ie)ul, +O(@)ul , + (Ol (s

Assuming we have bounds on the norms of the radial and angular derivatives of
u, we will show how to obtain |[u|s: .. We recall

o —1/2
||UHB*>R = ksgiz lIr u||L2(drdg,2k*1§r§2k+1)7

=/

hence we need to bound ||r="“u|| uniformly in k. We consider

L2(drdg,2k—1<r<2k+1)
h=Xx" hP-1+ic.
Let xx a cutoff on (2€~7, 2¢*7) then
Re(xxu, (h*P — 1+ ie’)u) = —|xkul|? + Re(xku, h*Pu)
implies
27 2 ul o g 21 <r ey < it
< — Re(r 2 xu, 1" x (h*P — 1 + ie")u) + 28 "Re(xr "/ 2u, xur "/ *h?Pu)
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Now by Cauchy-Schwartz if § € (0, 1)

IRe(r™"*xku, ' xi(h*P — 1 + i’ )u)| < 0(5)Hrq/zuuzz(drdg.zm§r§2k+1)
N o, ; 2
+0(5 "|Ir*(h*P 1 +IE/)UHLZ(drdg,Zk*1§r§2k+1)
=22
<o(3)|r™" UlI2(drdg, 261 <r< k1)

—1 2 ;! 2
+ 007 )II(h"P =1+ ie)ullz_,,
where we have the desired quantity (h?P — 1+ ic’)u and an absorbable term .
We still have
—1/2,,112
lIr /u||L2(drdg,2k*1§r§2k+1)

< Re(r 2 xu, "y (h*P — 1+ ie")u) + Re(xur~?u, xir~/*h*Pu).

In the term Re(x«r~"/2u, xxr~/?h%Pu) we will exchange decay for smallness
which generated the extra term |[|ul|, k(s))-
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We recall P is the magnetic Laplacian, it contains for example a radially decaying
potential
Vin.

If we consider the contribution of Vp,
IRe(xir ™2 u, xur ™ Vimu)| =|Re(xr ™ 2u, 1™ (I Vim) xur ™/ ?u))|
v(1—k —1/2 2
<0(2 ¢ ))Hr / uHLz(drdg,2’<*1§r§2k“)

<0(2"")|ul5,

which is an absorbable term if 2/('% is small enough. This is true for k > 1, or
in other words on an interval (2¥~", 2€*") which is far away at radial infinity.
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We recall P is the magnetic Laplacian, it contains for example a radially decaying
potential
V.

If we consider the contribution of Vp,
IRe(xir ™2 u, xur ™ Vimu)| =|Re(xr ™ 2u, 1™ (I Vi) xur ™/ ?u))|
1—K)N | —1/2, 112
So(zy( ))Hr 4 UHLQ(drdg,Z‘(”Srng“)

<02 ull3: ,

which is an absorbable term if 2“(~%) is small enough. This is true for k > 1, or
in other words on an interval (25", 2*") which is far away at radial infinity.
We know how to bound

IRe(xur ™" 2u, xur ™/ *Vimu)|  fork > k()

which leaves us with all the previous intervals (2=, 254", ko < k < () that
make up our compactly supported term [[ul| s -
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It remains to consider the contributions in
Re(xir~"2u, xur~"/*h*Pu)

given by the differential terms of P.
The idea is that P is of order two and " P'/?" defines the H' norm.
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It remains to consider the contributions in
Re(xr™"?u, xxr~/*h*Pu)
given by the differential terms of P.

The idea is that P is of order two and " P/?" defines the H' norm.

We recall that we are in the region (R, +c0) x S where S is the angular manifold.
For example, in h?P the term

M(r) > 0 selfadjoint

is the part of the operator in the angular variables. Thanks to the selfadjointness
(and since M(r) acts only on the radial variables)

|Re(xir™"u, xur™ /2 M(r)u)| =|Re(xir™"*M(r)"?u, xaer~"*M(r) /)|
-1/2 1/2,,112
:Hr / M(r)/ u||L2(drdg,2k—1§r§2k+1)
which is part of the norm || - ||1 g~ o
>

For [[r="/>M(r)"/?ull 2 grag 2¢—1<r<2k+1) We use the bound on the angular

derivatives ||M(r)1/2u||3*>R.
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Step 2. is an application of the inequality
IVllenvgy < O ™)IT + R = 2°Wllizvy) + IVlli2(oq)) 0 C Vo, VoMo = 0.

to
T+R=P 22=2X2—j.
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Step 2. is an application of the inequality
IVl < O MYT + R = Z2WVllizqvy) + IVlli2(wg) @0 C Vo, Vo N Mo = 0.

to
T+R=P Z22=)2_jc.

To get rid of the control term |[|v|| 2, we apply it to xou with xo = 0 on o.

Yo ——

Then
Ul v xe) <0(eM)|I(P— N + iE)(XOU)HLZ(M\XR1)
<0(eM)||(P— N + iE)UHLZ(M\XR1) +0(eM) I[P, XO]U||L2(M\XR1)

<llull )
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In step 3. we use the fact that ¢ is negative somewhere . We need to prove a
bound on a region containing U, so say He*“"uHm(Xb \Xp.)*
2 1

To do so, we use an inequality which holds for functions vanishing on Ry.

We can apply it to yju and the right hand
side yields terms of the form

 /
—1 A 2 : (
oA )[e**(P—A Jr’5)(X1U)HLZ(XRO\XRZ) ; 5
- 2] q | .
< 0O (P = N + ie)ulliz g, ey (U )
+0(AT)lIe* ullinx, 1x — ——
( b1\ bz) [ b, /}\bq_ 0 /)\ 3 Ra
where on X, \ X, the factor e*¢ provides Yo Ny
a small parameter since ¢ < 0 in this Y

regionand A > 1.
This means that we are able to absorb O()\*1)|\eA*’u||H1(Xb \X,,) ON the left by
1

||UHH1(M\XR)-
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