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Introduction

Manifold (M,G) M = K ∪ (M \ K) with M \ K infinite end and dimension n ≥ 3.

We make assumptions on the asymptotic behaviour of the metric on M \ K.

Example: Writing x = rω with r = |x|, ω = x
|x| we can represent Rn

∗ with

Rn
∗  ((0,∞)× Sn−1, dr2 + r2dσ)

and Rn outside of a compact obstacle with ((R,∞)× Sn−1, dr2 + r2dσ).
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Introduction

Manifold (M,G) M = K ∪ (M \ K) with M \ K infinite end and dimension n ≥ 3.

We make assumptions on the asymptotic behaviour of the metric on M \ K.

More generally, instead of the sphere we can consider (S, g(r)) where g(r) is
perturbation of a fixed metric g on S.

M \ K  ((R,∞)× S, dr2 + r2g(r)).

We say then that M is asymptotically conical .
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Introduction

Remark: We can actually write the metric in a more general form

dr2 + l(r)−2g(r)

where
O(1) ≥ −

l′(r)
l(r)
≥

c
r

c > 0 (for ex. l(r) = r−1, l(r) = e−r).

This allows to include the asymptotically conical and asymptotically hyperbolic cases at
the same time.

On M we can consider the Laplace-Beltrami operator P0. The operator is
selfadjoint, hence

(P0 − z)−1

is well defined for any z ∈ C \ R+.

We are interested in the study of the boundary value of the resolvent

(P0 − λ2 + i0)−1 := lim
ε→0

(P0 − λ2 + iε)−1

that is when the spectral parameter z = λ2 − iε approaches the resolvent set.
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We want to obtain uniform estimates when ε→ 0.

Example: On R3 we can write the integral kernel of the resolvent, to bound the resolvent we
would need to evaluate the L2 norm of

(−∆− z2)−1f(x) =

∫
eiz|x−y|

4π|x− y|
f(y)dy =

∫
e−Imz|x−y| eiRez|x−y|

4π|x− y|
f(y)dy

this produces a bound in |Imz|−1 when regarded as an operator on L2.

More in general, we recall that

‖(P0 − z)−1‖L2→L2 ≤
1
|Imz|

so there is no hope to obtain uniform bounds in ε just in L2.

The right operator topology to consider is the one of operators on weighted L2

spaces
L2
s = L2(〈x〉sdx), s > 1/2.

We can study (P0 − λ2 + i0)−1 as an operator of B(L2
s , L2
−s), which translates on

L2 bounds on
〈x〉−s(P0 − λ2 + i0)−1〈x〉−s.
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Why is the limit ε→ 0 interesting?

• Writing functional calculus via the spectral measure and then using Stone’s
formula

eitP0 =

∫
eitλ dEP0(λ)
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Why is the limit ε→ 0 interesting?

• Writing functional calculus via the spectral measure and then using Stone’s
formula

eitP0 =

∫
eitλ dEP0(λ) =

∫
eitλIm(P0 − λ2 + i0)−1 dλ

if we have an L2 bound on Im(P0 − λ2 + i0)−1 in B(L2
s , L2
−s) we can obtain

time decay estimates on 〈x〉−seitP0〈x〉−s.
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• Writing functional calculus via the spectral measure and then using Stone’s
formula
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∫
eitλ dEP0(λ) =

∫
eitλIm(P0 − λ2 + i0)−1 dλ

if we have an L2 bound on Im(P0 − λ2 + i0)−1 in B(L2
s , L2
−s) we can obtain

time decay estimates on 〈x〉−seitP0〈x〉−s.
• Strichartz estimates for eit(P0+V) hold if |V|1/2 is (P0 + V)-smooth

(Rodnianski-Schlag ’03).
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Why is the limit ε→ 0 interesting?

• Writing functional calculus via the spectral measure and then using Stone’s
formula

eitP0 =

∫
eitλ dEP0(λ) =

∫
eitλIm(P0 − λ2 + i0)−1 dλ

if we have an L2 bound on Im(P0 − λ2 + i0)−1 in B(L2
s , L2
−s) we can obtain

time decay estimates on 〈x〉−seitP0〈x〉−s.
• Strichartz estimates for eit(P0+V) hold if |V|1/2 is (P0 + V)-smooth

(Rodnianski-Schlag ’03). If V = O(〈x〉−2s), |V|1/2 is (P0 + V)-smooth if we
have an L2 bound on

‖〈x〉−s(P0 + V − λ2 ± i0)−1‖L2→L2 .
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Why is the limit ε→ 0 interesting?

• Writing functional calculus via the spectral measure and then using Stone’s
formula

eitP0 =

∫
eitλ dEP0(λ) =

∫
eitλIm(P0 − λ2 + i0)−1 dλ

if we have an L2 bound on Im(P0 − λ2 + i0)−1 in B(L2
s , L2
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(Rodnianski-Schlag ’03). If V = O(〈x〉−2s), |V|1/2 is (P0 + V)-smooth if we
have an L2 bound on

‖〈x〉−s(P0 + V − λ2 ± i0)−1‖L2→L2 .

• Asymptotic expansion of the spectral shift function holds if (P0 − λ2 ± i0)−1

has bound O(ecλ) in the B(L2
s , L2
−s) topology (Robert ’94).
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Why is the limit ε→ 0 interesting?

• Writing functional calculus via the spectral measure and then using Stone’s
formula

eitP0 =

∫
eitλ dEP0(λ) =

∫
eitλIm(P0 − λ2 + i0)−1 dλ

if we have an L2 bound on Im(P0 − λ2 + i0)−1 in B(L2
s , L2
−s) we can obtain

time decay estimates on 〈x〉−seitP0〈x〉−s.
• Strichartz estimates for eit(P0+V) hold if |V|1/2 is (P0 + V)-smooth

(Rodnianski-Schlag ’03). If V = O(〈x〉−2s), |V|1/2 is (P0 + V)-smooth if we
have an L2 bound on

‖〈x〉−s(P0 + V − λ2 ± i0)−1‖L2→L2 .

• Asymptotic expansion of the spectral shift function holds if (P0 − λ2 ± i0)−1

has bound O(ecλ) in the B(L2
s , L2
−s) topology (Robert ’94).

(Idea: integrate (P0 − z)−1 on an exponentially small stripe in a contour
deformation argument.)
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Question

We will be interested in a perturbation of the Laplace-Beltrami operator P0.

To define P0 on M we use the quadratic form

〈DGu,DGv〉L2(M)

where DG is the gradient induced by the metric on M. We modify this quadratic
form by taking DG − A with A a decaying vector field.

We then obtain the magnetic Laplacian P on (M,G) via the quadratic form

〈(DG − A)u, (DG − A)v〉L2(M).

In P we can also include a decaying potential (long range).

We will then consider
(P− λ2 + iε)−1

when ε→ 0 in the appropriate weighted spaces.
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References for the Laplacian with a potential

On Rn:

• When no trapped geodesics: bound in O(λ−1) with weights 〈x〉−1/2−µ

(Robert-Tamura ’88, Wang ’88, Gerard Martinez ’89)
• When some trapping is allowed: outside of an obstacle (Ikawa ’85)

On non compact manifolds:

• At worse: O(ecλ) (Burq ’98 outside of an obstacle, Burq ’02 long range
potential)
• At best: O(λ−1) (Cardoso-Vodev ’02)
• With some trapping: O(λ−1/2 log λ) (Nonnenmacher-Zworski ’09, Datchev

’09) O(λ−σ), σ < 1 (Christianson-Wunsch ’13)
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Goals

• Obtain estimates in the case of the perturbed operator P.
• Optimise the weights in considering decaying weights of strenght −1/2 in

Besov-like spaces (as suggested from results on Rn, Agmon-Hörmander
’76).
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Goals

• Obtain estimates in the case of the perturbed operator P.
• Optimise the weights in considering decaying weights of strenght −1/2 in

Besov-like spaces (as suggested from results on Rn, Agmon-Hörmander
’76).

• Have a control for all high frequencies λ� 1 to which other approaches,
like Mourre theory, are not well adapted if no assumption is added.

Example: The main assumption of Mourre theory is a positive commutator estimate. On
Rn one exploits the property

i[−∆,A] = 2(−∆)

whereA is the generator of dilationsA = x·∇+∇·x
2i . For more general operators one can

hope to obtain for the suitableA

φ(P)i[P,A]φ(P) ≥ φ2(P)P + φ(P)Kφ(P).

The remainder φ(P)Kφ(P) can be treated with additional assumptions.
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Goals

• Obtain estimates in the case of the perturbed operator P.
• Optimise the weights in considering decaying weights of strenght −1/2 in

Besov-like spaces (as suggested from results on Rn, Agmon-Hörmander
’76).

• Have a control for all high frequencies λ� 1 to which other approaches,
like Mourre theory, are not well adapted if no assumption is added.

Perspectives:

• Possibly push forward the frequency independent approach of the first part
of the work to obtain estimates for all intermediate and high frequencies.
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One of the goals is improving the weights.

We recall that at infinity the manifold is of the form

((R,+∞)× S, dr2 + r2g(r)),

the unbounded direction is the radial one, hence the weight will be r−1/2.

In the region (R,+∞)× S

1. we partition (R,+∞) in dyadic intervals [2k−1, 2k+1],
2. on [2k−1, 2k+1] we consider ‖r1/2v‖L2(drdg,2k−1≤r≤2k+1)

3. take the `1 norm of the sequence at step 2.

This defines
‖v‖B>R =

∑
k≥k0

‖r1/2v‖L2(drdg,2k−1≤r≤2k+1).

For the dual norm we replace

r1/2  r−1/2 `1  `∞

and obtain
‖v‖B∗

>R
= sup

k≥k0
‖r−1/2v‖L2(drdg,2k−1≤r≤2k+1).
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Result

Theorem (V.G. ’23)

Let u ∈ H2(M), λ� 1,
XR := (R,+∞)× S

and R1 > R. There exists a constant C > 0 independent of λ and ε sucht that

‖u‖H1(M\XR) + ‖u‖H1,B∗
>R
≤O(λ−1eλC)‖(P− λ2 + iε)u‖L2(M\XR1

)

+ O(λ−1eλC)‖(P− λ2 + iε)u‖B>R ,

where ‖u‖H1,B∗
>R

includes the norms of u and of its derivatives.

Comments:

• A bound on ‖u‖H1,B∗
>R

implies the more common bound on L2 weighted
spaces with weight r−1/2−µ.
• Unlike Vodev (’02) and Cardoso, Vodev (’02) we include perturbations of

order one.
• The first part of our proof is not restricted to the high frequency regime .
• We do not allow cusps.
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To be more precise, what we can prove is

‖u‖L2(M\XR1
) + O(eλC)‖u‖B∗

>R
≤O(λ−1eλC)‖(P− λ2 + iε)u‖L2(M\XR1

)

+ O(λ−1eλC)‖(P− λ2 + iε)u‖B>R ,

where M \ XR1 is a bounded region. For a function supported at infinity we can
simplify the exponential factors.

Hence if we cut away from the compact portion of M we obtain a bound in
O(λ−1).

Corollary (Cutoff resolvent V.G. ’23)

Let λ� 1. There exists R1 > R and χ a smooth cutoff on XR1 = (R1,+∞)× S such that
for all ε > 0

‖χ(P− λ2 + iε)−1χ‖B>R1
→B∗

>R1
≤ O(λ−1)

in particular
‖r−1/2−µχ(P− λ2 + iε)−1χr−1/2−µ‖L2→L2 ≤ O(λ−1).
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We can directly see that the B>R1 → B∗>R1
bounds imply the L2

1/2+µ → L2
−1/2−µ

ones.

We can just use the inclusions

L2
1/2+µ(r > R1) ↪→ B>R1 , B∗>R1 ↪→ L2

−1/2−µ(r > R1).
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Strategy

1. On M \ K bound u by (P− λ2 + iε)u
up to a small term.

Byproduct: the H1 norm of u over a
compact set (because we have no
semiclassical parameter )

2. On K use Carleman estimates to
bound u by (P− λ2 + iε)u.

Byproduct: the H1 norm of u over a
compact set. The term is of
exponential size in λ.

3. We bound the exponentially large
remainders thanks to a
λ-dependent weight.

Remark: Only in step 3 we need to use the assumption λ� 1.
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Step 1: Estimates on the infinite end
(Any frequency λ > λ0)
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In this part we consider the region

((R,+∞)× S, dr2 + r2g(r)).

We find that for any δ ∈ (0, 1) there exists c(δ) > 1 and a compact subset K(δ) of
(R,+∞)× S such that

‖u‖H1,B∗
>R
≤ O(δ−1λ−1)‖(P− λ2 + iε)u‖B>R + O(δ)‖u‖H1,B∗

>R
+ c(δ)‖u‖H1(K(δ))

for all u ∈ H2(M).

Here ‖ · ‖H1,B∗
>R

is a shorthand for the B∗>R norms of u, of its radial derivative and
of its angular derivative.
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hand side.
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In this part we consider the region

((R,+∞)× S, dr2 + r2g(r)).

We find that for any δ ∈ (0, 1) there exists c(δ) > 1 and a compact subset K(δ) of
(R,+∞)× S such that

‖u‖H1,B∗
>R
≤ O(δ−1λ−1)‖(P− λ2 + iε)u‖B>R + O(δ)‖u‖H1,B∗

>R
+ c(δ)‖u‖H1(K(δ))

for all u ∈ H2(M).

Here ‖ · ‖H1,B∗
>R

is a shorthand for the B∗>R norms of u, of its radial derivative and
of its angular derivative.

We use the result with a small enough δ in order to absorb the term on the right
hand side.

Byproduct of step 1.
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Remark: The additional term on K(δ) is necessary to get the the absorbable term O(δ).

Why? λ−1 is not necessarily small (λ > λ0 only). In a way, we have no
semiclassical parameter available that can give us the smallness we want in δ.

Fix: We can recover smallness thanks to decaying factors r−ν with ν > 0
provided r is large enough.

In other words, the norm for r ≥ R(δ) contributes to the term O(δ) and the norm
for R ≤ r ≤ R(δ) is the contribution of K(δ).
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Step 2: Estimates on bounded region
(Any frequency λ > λ0)
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From

‖u‖2H1,B∗
>R
≤ O(δ−1λ−2)‖(P− λ2 + iε)u‖2B>R + O(δ)‖u‖2H1,B∗

>R
+ c(δ)‖u‖2H1(K(δ))

we fix δ0 ∈ (0, 1) such that O(δ0) < 1 and after moving O(δ)‖u‖2H1,B∗
>R

to the left
we have

‖u‖H1,B∗
>R
≤ O(λ−1)‖(P− λ2 + iε)u‖B>R + O(1)‖u‖H1(K(δ0)),

This bounds the norm of u on XR = (R,+∞)× S.

For the remaining compact region we use a consequence of Carleman estimates
due to Lebeau and Robbiano (’95). This gives the exponential factors O(eλC).
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Proposition (Interpolation inequality G.L.-L.R. ’95, G.L.-L.R.-J.L ’22)

LetM a Riemannian manifold, T the Laplace-Berltrami operator onM andR a
differential operator of order one. Let σ,W,V open subsets ofM such that

σ ⊂ W ⊂ V, W ∩ ∂M = ∅.

There exist c > 0, γ ∈ (0, 1) such that

‖v‖H1(W) ≤ c‖v‖1−γH1(V)
(‖(T +R− ∂2

t )v‖L2(V) + ‖v‖L2(σ))γ

for any v ∈ H2(M).

If we apply it toM = (−1, 1)t ×M0 and v = v(t,m) = etzu(m),m ∈M0

(T − ∂2
t +R)v = etz(T +R− z2)u(m)

which we will use with T +R = P and z2 = λ2 − iε.
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We recall that M \ XR is a compact region. From step 2 we obtain

‖u‖H1(M\XR) ≤ O(eλ/γ)‖(P− λ2 + iε)u‖L2(M\XR1
) + O(eλ/γ)‖u‖H1(U)

with R1 > R, U open bounded subset of XR and γ ∈ (0, 1).

The right hand side is of the same form of the one in step 1.

Remark: we can choose U such that K(δ0) ⊂ U so that the remainders are contained in the
same compact region.
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Step 3: Combining spatial infinity and the
bounded region.

(Frequencies λ� 1)
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Up to now we have

‖u‖H1,B∗
>R
≤ O(λ−1)‖(P− λ2 + iε)u‖B>R + O(1)‖u‖H1(K(δ0)),

‖u‖H1(M\XR) ≤ O(eλ/γ)‖(P− λ2 + iε)u‖L2(M\XR1
) + O(eλ/γ)‖u‖H1(U).

with K(δ0) ⊂ U. Adding the two inequalities

‖u‖H1(M\XR) + ‖u‖H1,B∗
>R
≤O(λ−1)‖(P− λ2 + iε)u‖B>R

+ O(eλ/γ)‖(P− λ2 + iε)u‖L2(M\XR1
) + O(eλ/γ)‖u‖H1(U)

for all λ > λ0.

Let ϕ(r) a smooth increasing function such that ϕ > 1/γ on U then

‖eλ/γu‖H1(U) = ‖e
λ(1/γ−ϕ)eλϕu‖H1(U) ≤ O(e−λc)︸ ︷︷ ︸

<1

‖eλϕu‖H1(U)

becomes a small term, since λ� 1. This implies that in its bound we are
allowed some remainder term, since we will be able to absorb them anyways.
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Let U′ a bounded region with U ⊂ U′, we bound ‖eλϕu‖H1(U′) by

O(e−λc)‖eλϕu‖H1(U′) ≤O(λ−1eλC)‖(P− λ2 + iε)u‖L2(M\XR1
)

+ O(λ−1eλC)‖(P− λ2 + iε)u‖B>R + O(e−λc)‖u‖H1(U′′)

with U′′ a bounded region in M \ XR. We use this to conclude

‖u‖H1(M\XR) + ‖u‖H1,B∗
>R
≤O(λ−1)‖(P− λ2 + iε)u‖B>R

+ O(eλ/γ)‖(P− λ2 + iε)u‖L2(M\XR1
) + O(eλ/γ)‖u‖H1(U)
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) + O(e−λc)‖u‖H1(U′′)

where the norm on U′′ is absorbable by M \ XR. So finally

‖u‖H1(M\XR) + ‖u‖H1,B∗
>R
≤O(λ−1eλC)‖(P− λ2 + iε)u‖B>R

+ O(λ−1eλC)‖(P− λ2 + iε)u‖L2(M\XR1
).
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We recall K(δ0) ⊂ U ⊂ U′, so trivially the norm on K(δ0) can be bounded by the
one on U′. With more careful computations we find

eλϕ∗‖u‖H1(K(δ0)) ≤ O(e−λc)‖eλϕu‖H1(U′)

thanks to the properties of ϕ. Then we can bound

eλϕ∗‖u‖H1,B∗
>R
≤eλϕ∗O(λ−1)‖(P− λ2 + iε)u‖B>R + O(e−λc)‖eλϕu‖H1(U′)

≤eλϕ∗O(λ−1)‖(P− λ2 + iε)u‖B>R

+ O(λ−1eλC)‖(P− λ2 + iε)u‖L2(M\XR1
) + O(e−λc)‖u‖H1(U′′).
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We combine the two regions by adding together ‖u‖L2(M\XR1
) and eλϕ∗‖u‖B∗

>R
to

find
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>R
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If u is supported at infinity away from M \ XR1 we obtain the bound O(λ−1) on
the cutoff resolvent.
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Some computations
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In step 1 we had for any δ ∈ (0, 1)

‖u‖2H1,B∗
>R
≤ O(δ−1λ−2)‖(P− λ2 + iε)u‖2B>R

+ O(δ)‖u‖2B∗
>R

+ c(δ)‖u‖2H1(K(δ))
.

Assuming we have bounds on the norms of the radial and angular derivatives of
u, we will show how to obtain ‖u‖B∗

>R
. We recall

‖u‖B∗
>R

= sup
k≥k0
‖r−1/2u‖L2(drdg,2k−1≤r≤2k+1),

hence we need to bound ‖r−1/2u‖
L2(drdg,2k−1≤r≤2k+1)

uniformly in k. We consider

h = λ−1 h2P− 1+ iε′.
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L2(drdg,2k−1≤r≤2k+1)

uniformly in k. We consider

h = λ−1 h2P− 1+ iε′.

Let χk a cutoff on (2k−1, 2k+1) then

Re(χ2
ku, (h

2P− 1+ iε′)u) = −‖χku‖2L2 + Re(χ2
ku, h

2Pu)

implies
‖r1/2r−1/2χku‖2L2
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Now by Cauchy-Schwartz if δ ∈ (0, 1)

|Re(r−1/2χku, r1/2χk(h2P− 1+ iε′)u)| ≤ O(δ)‖r−1/2u‖2L2(drdg,2k−1≤r≤2k+1)

+ O(δ−1)‖r1/2(h2P− 1+ iε′)u‖2L2(drdg,2k−1≤r≤2k+1)

≤O(δ)‖r−1/2u‖2L2(drdg,2k−1≤r≤2k+1)

+ O(δ−1)‖(h2P− 1+ iε′)u‖2B>R ,

where we have the desired quantity (h2P− 1+ iε′)u and an absorbable term .

We still have

‖r−1/2u‖2L2(drdg,2k−1≤r≤2k+1)

≤ Re(r−1/2χku, r1/2χk(h2P− 1+ iε′)u) + Re(χkr−1/2u, χkr−1/2h2Pu).

In the term Re(χkr−1/2u, χkr−1/2h2Pu) we will exchange decay for smallness
which generated the extra term ‖u‖H1(K(δ)).
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We recall P is the magnetic Laplacian, it contains for example a radially decaying
potential

Vm.

If we consider the contribution of Vm

|Re(χkr−1/2u, χkr−1/2Vmu)| =|Re(χkr−1/2u, r−ν(rνVm)χkr−1/2u)|

≤O(2ν(1−k))‖r−1/2u‖2L2(drdg,2k−1≤r≤2k+1)

≤O(2ν(1−k))‖u‖2B∗
>R

which is an absorbable term if 2ν(1−k) is small enough. This is true for k� 1, or
in other words on an interval (2k−1, 2k+1) which is far away at radial infinity.
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≤O(2ν(1−k))‖r−1/2u‖2L2(drdg,2k−1≤r≤2k+1)

≤O(2ν(1−k))‖u‖2B∗
>R

which is an absorbable term if 2ν(1−k) is small enough. This is true for k� 1, or
in other words on an interval (2k−1, 2k+1) which is far away at radial infinity.

We know how to bound

|Re(χkr−1/2u, χkr−1/2Vmu)| for k ≥ κ(δ)

which leaves us with all the previous intervals (2k−1, 2k+1), k0 ≤ k < κ(δ) that
make up our compactly supported term ‖u‖H1(K(δ)) .
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It remains to consider the contributions in

Re(χkr−1/2u, χkr−1/2h2Pu)

given by the differential terms of P.

The idea is that P is of order two and ”P1/2” defines the H1 norm.
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It remains to consider the contributions in

Re(χkr−1/2u, χkr−1/2h2Pu)

given by the differential terms of P.

The idea is that P is of order two and ”P1/2” defines the H1 norm.

We recall that we are in the region (R,+∞)× S where S is the angular manifold.
For example, in h2P the term

M(r) ≥ 0 selfadjoint

is the part of the operator in the angular variables. Thanks to the selfadjointness
(and since M(r) acts only on the radial variables)

|Re(χkr−1/2u, χkr−1/2M(r)u)| =|Re(χkr−1/2M(r)1/2u, χkr−1/2M(r)1/2u)|

=‖r−1/2M(r)1/2u‖2L2(drdg,2k−1≤r≤2k+1)

which is part of the norm ‖ · ‖H1,B∗
>R

.

For ‖r−1/2M(r)1/2u‖L2(drdg,2k−1≤r≤2k+1) we use the bound on the angular
derivatives ‖M(r)1/2u‖B∗

>R
.
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Step 2. is an application of the inequality

‖v‖H1(V0) ≤ O(e|z|/γ)(‖(T +R− z2)v‖L2(V0) + ‖v‖L2(σ0)) σ0 ⊂ V0, V0 ∩ ∂M0 = ∅.

to
T +R = P z2 = λ2 − iε.
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Step 2. is an application of the inequality

‖v‖H1(V0) ≤ O(e|z|/γ)(‖(T +R− z2)v‖L2(V0) + ‖v‖L2(σ0)) σ0 ⊂ V0, V0 ∩ ∂M0 = ∅.

to
T +R = P z2 = λ2 − iε.

To get rid of the control term ‖v‖L2(σ0) we apply it to χ0u with χ0 ≡ 0 on σ0.

Then

‖u‖H1(M\XR) ≤O(e
λ/γ)‖(P− λ2 + iε)(χ0u)‖L2(M\XR1

)

≤O(eλ/γ)‖(P− λ2 + iε)u‖L2(M\XR1
) + O(eλ/γ) ‖[P, χ0]u‖L2(M\XR1

)︸ ︷︷ ︸
≤‖u‖H1(U)
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In step 3. we use the fact that ϕ is negative somewhere . We need to prove a
bound on a region containing U, so say ‖eλϕu‖H1(Xb2

\XR1
).

To do so, we use an inequality which holds for functions vanishing on R0.

We can apply it to χ1u and the right hand
side yields terms of the form

O(λ−1)‖eλϕ(P− λ2 + iε)(χ1u)‖L2(XR0
\XR2

)

≤ O(λ−1)‖eλϕ(P− λ2 + iε)u‖L2(XR0
\XR2

)

+ O(λ−1)‖eλϕu‖H1(Xb1
\Xb2

)

where on Xb1 \Xb2 the factor eλϕ provides
a small parameter since ϕ < 0 in this
region and λ� 1.

This means that we are able to absorb O(λ−1)‖eλϕu‖H1(Xb1
\Xb2

) on the left by
‖u‖H1(M\XR).
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