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Overview

(Note: subjective overview of results most relevant to this

grant/conference)

We consider N fermions without spin in a mean-field limit.
Topics of this talk:
(1) Hartree—Fock equations (for pair interaction).

(2) Vlasov and Thomas—Fermi equations.

(3) Fermions coupled to a bosonic field.



Introduction

We consider:

e N fermions in d dimensions (mostly d = 3).
e Configuration space: QN, with either Q = R or Q = [0, L]9.
e Wave function o € L2,(QN)
- {¢€ LZ(QN):w(...,><j,...,xk7...):—w(...,xk,...,xj,...)}.

Hamiltonian H = self-adjoint operator on L2 (QN)

Time-independent Schrddinger equation (spectral problem):
Hvy = Eq.

Especially relevant/accessible: ground state energy Eq = inf o(H).

Time-dependent Schrddinger equation (dynamical problem):
i0¢p(t) = H(t),
with initial data ¥(0) € L2,(QV) = (t) = e~ (0).



(1) The Hamiltonian

We study Hamiltonians

N
H=2 (=07 + ) vix
j=1 i<j
with
e A the Laplace operator,
e v :R? — R the pair-interaction potential,

e \y > 0 the coupling constant.

Case (A):
e Choose v(x) = |x|~! (Coulomb potential), d = 3.
e Consider initial data localized in volume of O(N).

e Then
1
Hy = Z NN DY
i<j ! J
E/—/ S——
=0(N) =0O(N5/3)

= choose \y = N=2/3 (mean-field limit) 4



(1.A) Mean-field Description

Approximation for 1(t): most simple antisymmetric wave function
< Choose orthonormal 1(t), ..., pn(t) € L2(R3).
— Effective N-particle state: /\JN:1 ©j(t) = Pur(t), with

N
¢up(t,xa, . ...oxw) = (N2> (=1)7 [] o (£, %)-
j=1

€SN
Here: the states ¢1(t), ..., n(t) solve the Hartree-Fock eq.s
i0epj(t) = —Depi(t) + N2 (|- |71 p(t)) (1)
direct term
N S
= NN (117 B () k(D)
k=1

exchange term
with density p(t) = Zivzl low(t) .

e Note: exchange term subleading, we omit it (fermionic Hartree eq.s).
e Mathematical properties of HF eq.s in general: Sabin’s talks



(1.A) Convergence

Convergence in terms of reduced one-particle density matrix
Yo 2 — 12

Yo(x,y) = / dxo ... dxy V(X X0,y xn)U(Y, X0, XN)-
Note:

—1 N
® Yng, =N ! j=1 lej) (&l
o tryy = [yl = 1

Want to show: 7y (t) = Yag,(t) @ N — oo in trace norm ||-[[,,
(assuming Yap(0) —* %w(o))

Then we can control bounded one-body operators A at time t:

|tr(Avy() = tr(Avagi)] < A [V = Yagio ], = O



(1.A) Results

Theorem (Bach, Breteaux, SP, Pickl, Tzaneteas [J. Math. Pures Appl., 2016])
N 2
If> 221 IVe;(0)[|” < CN, then

V24 N*l/ﬁ).

H%ll(f) - 7¢HF(f)||tr = e (N1/3 H%ll(o) = Vour(0) || ¢r

Theorem (SP [J. Phys. A: Math. Theor., 2017])
2
IS || V4i(0)||° < CN, then

[0 = Your ol < €& (o0 = Yoml e~ +N72).

Remarks:

e Theorems also hold with exchange term.

e Results for N1 scaling: Bardos, Golse, Gottlieb, Mauser (2003,
bounded v); Frohlich, Knowles (2011, Coulomb)



(1.A) Discussion of Mean-field Approximation

i0epj(t) = —Ap;(t) + N72/3 (|- |71 % p(t)) 5(t)

Note that “force” is small here: think of bounded p with support on ball
with radius N/3, then
N/3
NZ2RIV(| T p) S NT2RL |72 p < CN*“/ r2ridr o N7,
0
i.e., average force per particle is small, O(N~1/3)
= closeness to free dynamics with t, x dependent phase

t
Fi(e) = e GE(e), with 04(x) = N2 [ s (] 1p™0(5)) (),
0

where
I.atSDJf‘ree(t) _ 7A(p§ree(t).



(1.A) Results

Theorem (SP [J. Phys. A: Math. Theor., 2017])
Y55 ||V43;(0)[|* < CN, then

v = gl < € (1o = gl +N72).

Remarks:

e convergence rate N—1/3 expected to be optimal

e simple examples for initial states:
< plane waves in a box [0, N*/3]3
— ©;(0) with non-overlapping compact support and
IV < ¢



(1.B) Scaling Limit

Force O(N~1/3) felt only on time scales O(N*/3).
= Case (B):
e Consider Schrodinger equation
N

INTYR0p(t) = Y (A )p(t) + N2 7 |xi — x|~ i (t).
j=1 i<j
e More convenient: rescale x — N~1/3x, i.e, initial data localized in
volume of O(1).
N

INTYR0pp(t) = 3 - NT2R(=A)0(t) + N2 Ixi — x| 71 (2.
j=1 i<j
e Since initial data localized in volume O(1), we can in fact consider a
more general v:

iN~ 1/38t1/J ZN 2/3 t)+ N~ IZ xi — x;) ¥(t).

i<j

= Coupled mean—fleld and semi-classical limit 10



(1.B) Results

iIN=138,4(t) ZN 2/3(_ +N1Z Xi — x) ¥

i<j

Overview of results:

e Elgart, Erdds, Schlein, Yau (2004) = small times, analytic v

e Benedikter, Porta, Schlein (2013) = all times, v in particular
bounded, explicit error estimates

e SP, Pickl (2014) = similar result; can be stated without reference to
Fock-space construction

Theorem (Benedikter, Porta, Schlein [Commun. Math. Phys., 2014])
Assume v € LY(R3), [ d®k (1 + |k|?)|0(k)| < oo, and

< CN7Y3,

sup(1+\k| 1||[7¢HF(0 X}

KER? tr

||[’Y¢HF(0 ”’ <C.

Then |17y = Your(o] e < € (11100 = Yol + N72). .



(1.B) Results

What about Coulomb interaction?

Theorem (Porta, Rademacher, Saffirio, Schlein [J. Stat. Phys., 2017])
Assume tr(—A)Yge(r) < CN?/3, and assume that there exists T > 0

and p > 5 such that

3
A/
tffffr]; (llﬂuxf,%m(t;u\\l + HP\[x,v,%,Hqullp) < CNTE,

and H“/w(O) — 7¢HF(O)HH < C. Then for every § > 0 there exits
C(6, T) > 0 such that
~1/12+5

ook |}71/’(f) - ’Y(/)HF(t)Htr < C((Sv T) N
te[0,T]

Note: Condition at time t holds for plane wave initial data in a box
Q = [0,1]3, but otherwise unclear.

Open problem: Proof only under (reasonable) assumption on initial data. |



(1.B) Results

More results:

Relativistic dispersion (Benedikter, Porta, Schlein 2014)
Mixed states (Benedikter, Jaksic, Porta, Saffirio, Schlein 2014)

e Norm approximation for homogeneous Fermi gas using bosonization
of particle-hole excitations (Benedikter, Nam, Porta, Schlein,
Seiringer 2022); also ground state energy

Fermions in magnetic fields: Perice's talk

13



(2) Setup

What is the semiclassical limit of

0N 0i(e) = —N-23Dgy(8) + N1 (v x () o5(t) 7
Consider Wigner transform
Wi(t, x,v) = N’1(27r)73/7¢HF(t)(X—|—N71/3y/2,x—N’1/3y/2)e”"’ydy.
(Its inverse is the Weyl quantization.) In the limit N — oo, it should
satisfy the Vlasov equation

O:W(t)+2v -V W(t) =V(v=p(t)) V,W(t).

(Note that Wi(t, x, v) is not a probability density, but W(t, x, v) is.)

Theorem (Benedikter, Porta, Saffirio, Schlein [ARMA, 2016])

Assume v € LY(R3), [ d®k (1 + |k|?)|0(k)| < oo, Wil < C,
[Wollw < C, and ||Wy — Wollx < CN7Y8, || Wy — Woll» < CN/S.
Then

[Wi(t) — W(t)|]2 < N~1/3ee” + N—1/66Ct,

Note: v(x) = |x|=2, for a € [0, ) (Chong, Lafleche, Saffirio, 2021-2023) 14



(2) Ground State Energy

Ground state energy of
N
HN:Z< N=23A, + Vot (x;) )+/v Py v(x - x).
Jj=1 i<j

Theorem (Fournais, Lewin, Solovej [Calc. Var. PDE, 2018])
(Confining case.) Assume

v, Vot g [14d/2 4 goo et e gl lim VR (x) = oo,
T |x|—o0
en
Eo(N
Jlim O/(v ) _ inf{gTF(p) 0<pelln L1+2/d,/p = 1},
—00
where
crrp d
Err(p) = %/ Rl / Vetp + = // v(x — )p(y)dxdy,

and ctg the Thomas—Fermi constant.

Note: This is also a minimizer of the Vlasov energy with
W(x,p) = ll(p2 < crrp(x)? ")- 15



(3) Microscopic Model: Nelson with UV cutoff

Dynamics:

e Hilbert space (M) = [2 (R3V) @ F 3 Wy, with F = bosonic
Fock space
e Schrodinger equation
iatN_l/3\UN,t = HN\UN,t,
with Hamiltonian

2/32( A)+ Ba(x) +N*1/3/d3kw(k)a*(k)a(k)

with
e bosonic creation and annihilation operators a*(k), a(k) with

[a(k), a(N)] = 0 = [a"(k),a"(N)], [a(k),a"(N)] = (k= 1)
e free dispersion reIation w(k) = Vk? + m?, mass m >0
o field operator ®a(x) = [ d*k 7 )( < a(k) + e‘ikxa*(k)),

with cutoff in momentum space: 7j(k) = (272 (3/) Lik<a(k), A > 1.

16



(3) Effective Equations

Consider initial state

/\% ® W(N*3a(0))Q2

/\J.N:1 ©;(0) antisymm. product of orthonormal o1, ..., oy € L?(R3)
a(0) € L3(R3)

e Q =vacuum in F, ie., a(k) Q=0

Weyl operator W(f) = exp (f a3k (f(k)a*(k)— f(k)a(k))). Note:

a(k)W(F)Q = f(k)W(F)Q, a*(k)W(F)Q = f(k)W(F)Q+ W(f)a*(k)Q

Schrodinger—Klein-Gordon equations:

N=13i9,05(t) = (— N=2/3A + g(x, t))goj(t), j=1,...,N
on(x, t) = / A2k (k) (e"kxa(t, k) + e~ *a(t, k))
i0ra(t, k) = w(k)alt, k) + (2m)* > N=H5(k) Flo(t)] (k),

with F = Fourier trafo, and electron density p(t,x) := ZJN:1 lpi(t, x)[? 17



(3) Effective Equations

Well-posedness:

e HX(R3?) = k-th Sobolev space

o B(R®) = {f e L2:|(1+]- H2F] < o0}

e Theorem: If ©9,..., 4% € H?(R3) orthonormal, a® € L3(R3), then
so are @i, ..., ¢ and «f; solutions also strongly differentiable.

Alternatively:
<8f — A+ m2)¢/\(x, t)
= —(27T)_3/2/d3k "1 <a(K) N~ F[p](k)
Note: A = oo, m = 0, with physical constants:
—292 e 1y
(c7202 = A o(x, £) = == N1pi(x)
)

2

As ¢ — co: Poisson eq., i.e., ¢(x,t) = —N712—(]- |71 * pt)(x)

41eg

(attractive Hartree-Coulomb)
18



(3) Main Result

Theorem (Leopold, SP [Ann. H. Poincaré, 2019])
N
Let p(0) = 1Y [27(0))(5(0)], g(0) := 1 — p(0). We assume

1p(0)e™ q(0)|lre < C(L+ [k[)N*/ Vk € R®,  [|p(0)Vq(0)|Imx < CN
and well-posedness. Let

W (0) = A »;(0) ® W(N*3a(0))Q.

~=

1

J

Then IR (e) = N p(E)le < AN,
vk (8) = la(e)) ()l < Ca(EN 272,

where p(t) = S/, @i (E) (@i (2)].

19



Open questions:

e No cutoff?
e Relativistic Fermions?

e Convergence to Vlasov—Klein-Gordon?
Related questions:

e UV cutoff (not mean-field): talks by Schach Mgller
e Other limits: Farhat’ talk (classical limit)

e One particle in radiation field: Bach's and Breteaux's talks

20



Thank you for your attention!



