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Outline of Talk

Introduce and motivate Gibbs measures for the nonlinear Schrödinger
equation (NLS)

Discuss the construction of Gibbs measures for a certain nonlocal quintic
nonlinear Schrödinger equation

Define an analogue of Gibbs measures for many-body quantum mechanics

Describe the convergence of these analogues as the number of particles goes
to infinity
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Hartree Equation

Define: For s ∈ R, we say u ∈ Hs(T) if

(1 + |k|2)s/2û(k) ∈ ℓ2,

∥u∥2Hs :=
∑

k∈Z(1 + |k|2)s|û(k)|2. Say u has Sobolev regularity s.

We will consider the following form of the nonlinear Schrödinger equation{
i∂tφ = (−∆+ κ)φ+N (i)(φ)

φ0 ∈ Hs(T),

where we take (x, t) ∈ T× R and
▶ N (2)(φ) :=

∫
dy w(x− y)|φ(y)|2φ(x) = (w ∗ |φ|2)φ(x)

▶ N (3)(φ) :=
∫
dy dz w(x− y)w(y − z)w(z − x)|φ(y)|2|φ(z)|2φ(x) ̸=

(w ∗ |φ|2)2φ(x)
w : T → R the interaction potential and κ > 0 a chemical potential

This regime is called the Hartree equation

If there are positivity assumptions on w, this called the defocusing problem.
Otherwise we call it the focusing problem
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We have two conserved quantities associated with the Hartree equation:

M(φ) :=

∫
dx |φ(x)|2,

H(φ) :=

∫
dx |∇φ(x)|2 + κ|φ(x)|2︸ ︷︷ ︸

H0

+W(i),

where
▶ W(2) := 1

2

∫
dx dy |φ(x)|2w(x− y)|φ(y)|2

▶ W(3) := 1
3

∫
dx dy dz w(x− y)w(y − z)w(z − y)|φ(y)|2|φ(z)|2|φ(x)|2|φ(y)|2

Idea: We use these conservation quantities to prove well-posedness

At low regularity, we need a “substitute for conservation laws”
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Gibbs measures

We can define the Gibbs measure associated to the NLS

dPGibbs :=
1

z
e−H(φ)dφ,

which is supported on the space of initial conditions of the NLS. Here

z is the partition function

H is the Hamiltonian

dφ is the (formal) infinite dimensional Lebesgue measure

These measures were first studied in CQFT literature (summaries: Nelson (’73),
Glimm-Jaffe (’81), Simon (’74)). To make the construction rigorous for a positive
L1 interaction potential w, one realises the Gibbs measure as a weighted Wiener
measure

dPGibbs =
1

z
e−Wdµ.
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Gibbs Measures II

Define the flow map St of the Hartree equation{
i∂tφ = (−∆+ κ)φ+N (i)(φ)

φ0 ∈ Hs(T),

by Stφ0(x) := φ(x, t)

A measure is invariant under the flow if dν(A) = dν(S−tA), where A is a
measurable subset of the space of initial conditions

Theorem (Liouville’s theorem)

For a finite dimensional Hamiltonian system{
ṗj =

∂H
∂qj

q̇j = − ∂H
∂pj

and a non-negative smooth function g, g(H)dLeb is invariant under the flow.
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Gibbs Measures III

We want to see what functions lie in this measures support

Note
∫
|∇φ|2 = c

∑
k∈Z |k|2|ak|2, where ak := φ̂(k)

Heuristically, for κ = 0

dµ ∼ e−c
∑

k∈Z |k|2|ak|2
∏
k∈Z

dak

=
∏
k∈Z

e−c|k|2|ak|2dak

|k|φ̂(k) has a Gaussian distribution – gives rise to a random Fourier series

Repeating for κ ̸= 0, a function in the support of µ is given by

φω(x) ≡ φ(x) =
∑
k∈N

gk(ω)√
|k|2 + κ

e2πikx,

where gk are i.i.d. centred complex Gaussians.
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Gibbs Measures IV

We want to know the regularity of functions in the support of µ.

Eµ

[
∥φ∥2Hs

]
= Eµ

[∑
k∈Z

(1 + |k|2)s |gk(ω)|
2

|k|2 + κ

]
∼

∑
k∈Z

(1 + |k|2)s−1

Finite if 2s− 2 < −1, i.e. s < 1/2.

A function in the support of µ is in H
1
2−ε for any ε > 0. Moreover

µ(Hs) = 1 for any s < 1/2 and µ(Hs) = 0 for any s ≥ 1/2

So for positive w ∈ L∞

W ≤ 1

2
∥w∥L∞∥φ∥4L2

so W ∈ [0,∞) almost surely
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Focusing potentials

Bourgain (’94) and Zhidkov (’91) showed that the Gibbs measure is invariant
under the flow of the NLS and Bourgain showed that the NLS is almost
surely globally well posed for functions in the support of the Gibbs measure.

Bourgain also showed that in the case of a non-positive interaction
potential, one requires a truncation in the mass of the problem.

Let f ∈ C∞
0 (R), and define

dPf
Gibbs :=

1

zf
e−Wf

(
∥φ∥2L2

)
dµ

In what follows, whenever we consider a Gibbs measure, we consider the
truncated measure, and we drop the f dependence from our notation.

This measure is absolutely continuous with respect to the Wiener measure
for local nonlocal Schrödinger equation, so has the same support.
Bourgain (’94) also showed that this measure is invariant and the NLS is
globally well posed for any function in its support.

This extends trivially to the nonlocal case for only the cubic NLS, and we
have to work harder for the quintic Hartree equation.
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Quintic Gibbs measure

N (3)(φ) :=

∫
dy dz w(x− y)w(y − z)w(z − x)|φ(y)|2|φ(z)|2φ(x)

Theorem (R-Sohinger ’23)

Consider the Hartree equation with nonlinearity given by N (3) and w ∈ L
3
2 . The

following claims hold.

(i) For B > 0 sufficiently small and φ given by the random Fourier series above,
we have

e−
1
3

∫
dx dy dz w(x−y)w(y−z)w(x−z) |φ(x)|2|φ(y)|2|φ(z)|2χ(M≤B) ∈ L1(dµ) .

In particular, for f with supp(f) ⊂ [−B,B], we get that the Gibbs measure
is a well-defined probability measure.

(ii) Consider s ∈ (0, 1
2 ). The measure PGibbs is invariant under the flow of

quintic Hartree equation. Furthermore, the quintic Hartree equation admits
global solutions for PGibbs-almost every u0 ∈ Hs(Λ).
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Ideas of proof

We show local well-posedness for w ∈ L
3
2 – uses Xs,b spaces and multilinear

estimates (Fourier analysis)

We use Sobolev embedding to notice∣∣∣N (3)
∣∣∣ ≤ 1

3
∥w∥3

L
3
2
∥φ∥6

H
1
3

We argue analogously to Bourgain (’94) to get normalisability

Following Bourgain, we use a Galerkin approximation to obtain invariance of
the measure.

Andrew Rout (University of Warwick) Gibbs measures for the focusing NLS August 31, 2023 11 / 30



Many-body quantum mechanics

We restrict ourselves to the two-body case

We define L2
s(TN ) to as the symmetric subspace of L2(TN ). I.e.

u(x1, . . . , xN ) = u(xπ1, . . . , uπN )

for any permutation π ∈ SN .

This framework corresponds to studying bosons.

We consider the N -body Hamiltonian on L2
s(TN )

HN :=

N∑
j=1

(−∆j + κ) +
1

N

N∑
i<j

w(xi − xj)
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Connecting Hartree and many-body problems

We can view the Hartree equation as the large particle limit of

i∂tΨN = HNΨN

If the initial condition is “close” to being factorised: ΨN (x, 0) ∼ φ⊗n
0 , then

ΨN (x, t) ∼ φ⊗n(x, t),

where φ satisfies{
i∂tφ = (−∆+ κ)φ+ (w ∗ |φ|2)(x)φ(x)
φ0.

This is made rigorous using reduced density matrix – Hepp (’74),
Ginibre-Velo (’79), Spohn (’80).
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Gibbs measures in many-body quantum mechanics

Question: What do Gibbs measures correspond to in many body quantum
mechanics?

Idea I: Fix the number of particles – canonical ensemble

Consider operator P
(N)
τ := 1

ZN
e−

1
τ HN

Expanding spectrally:

P (N)
τ =

1∑
k∈Z e

−λN,k/τ

∑
k∈Z

e−λN,k/τuku
∗
k

Taking τ → ∞, we get a uniform distribution onto the spectral projections

Taking τ → 0, we get a δ measure on the ground state projection

To get a non-trivial limit, we need to vary the number of particles – grand
canonical ensemble. We also need to vary temperature with the number of
particles τ = N .
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Grand canonical ensemble
We work with the bosonic Fock space

F :=
⊕
p≥0

L2
s(Tp)

For g ∈ L2(T), we consider the creation and annihilation operators

(b∗(g)Ψ)
(p)

(x1, . . . , xp) :=
1
√
p

p∑
i=1

g(xi)Ψ
(p−1)(x1, . . . , xi−1, xi+1, . . . , xp) ,

(b(g)Ψ)
(p)

(x1, . . . , xp) :=
√
p+ 1

∫
dx g(x)Ψ(p+1)(x, x1, . . . , xp)

These are operator-valued distributions – “test” against a function to get an
operator

These satisfy the canonical commutation relations

[b(g1), b
∗(g2)] = ⟨g1, g2⟩h, [b(g1), b(g2)] = [b∗(g1), b

∗(g2)] = 0 ,

for all g1, g2 ∈ L2(T).
We consider the rescaled creation and annihilation operators
φ∗
τ (g) := τ−1/2b∗(f) and φτ (g) := τ−1/2b(f).
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Grand Canonical ensemble II
For a closed linear operator ξ on L2

s(TN ), we identify it with its Schwartz
kernel, ξ(x1, . . . , xp, y1, . . . , yp).

We define the lift of an operator ξ to Fock space as

Θτ (ξ) :=

∫
dx1 . . . dxp dy1 . . . dyp ξ(x1, . . . , xp, y1, . . . , yp)

φ∗
τ (x1) . . . φ

∗
τ (xp)φτ (y1) . . . φτ (yp),

where φ∗
τ (x) := φ∗

τ (δx) is the distribution kernel of φ∗
τ .

We can interpret φ∗
τ and φτ as the quantum analogues of φ and φ. In

particular, the canonical commutation relations imply

[φτ (x), φ
∗
τ (y)] =

1

τ
δ(x− y)

For h = −∆+ κ and W (2) the two particle operator which acts by
multiplication by w(x1 − x2), define

Hτ,0 := Θτ (h), W(2)
τ :=

1

2
Θτ (W

(2)).
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Quantum State
The interacting quantum Hamiltonian is defined as

Hτ := Hτ,0 +Wτ ,

and the rescaled particle number as

Nτ :=

∫
dxφ∗

τ (x)φτ (x).

We define the grand canonical ensemble as Pτ := e−Hτ .

For A : F → F , the quantum state ρfτ (·) ≡ ρτ (·) is defined as

ρτ (A) :=
TrF (APτf (Nτ ))

TrF (Pτf (Nτ ))
.

We consider

Zτ := Tr
(
e−Hτ f (Nτ )

)
, Zτ,0 := Tr

(
e−Hτ,0

)
, Zτ :=

Zτ

Zτ,0
,

the quantum, free quantum, and relative quantum partition functions.
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Classical State
In analogy to the quantum case, for a bounded operator on h, we define the
random variable

Θ(ξ) :=

∫
dx1 . . . dxp dy1 . . . dyp ξ(x1, . . . , xp; y1, . . . , yp)

× φ(x1) . . . φ(xp)φ(y1) . . . φ(yp),

and

H := Θ(h)︸ ︷︷ ︸
H0

+
1

2
Θ(W )︸ ︷︷ ︸
W(2)

We define the classical state, ρ = ρf of a random variable X as

ρ(X) =

∫
dµXe−W(2)

f
(
∥φ∥2L2

)∫
dµ e−W(2)f

(
∥φ∥2L2

) .

We consider the classical partition function

z :=

∫
dµ e−W(2)

f
(
∥φ∥2L2

)
.
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Correlation functions

Both the classical and quantum states can be characterised through their
correlation functions, which have kernels defined as

γp(x1, . . . , xp; y1, . . . , yp) := ρ (φ(y1) . . . φ(yp)φ(x1) . . . φ(xp)) ,

γτ,p(x1, . . . , xp; y1, . . . , yp) := ρτ (φ
∗
τ (y1) . . . φ

∗
τ (yp)φτ (x1) . . . φτ (xp)).

Theorem (R-Sohinger ’23)

Let w ∈ L∞ be real valued and even. Given p ∈ {1, 2, . . .}, we have

lim
τ→∞

TrL2(Tp) |γτ,p − γp| = 0.

Moreover
lim
τ→∞

Zτ = z.

We also prove similar results for w ∈ L1 and w = −δ
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Quintic Result
We take

W(3)
τ :=

1

3
Θτ (W

(3)),

where W (3) acts as multiplication by w(x1 − x2)w(x2 − x3)w(x3 − x1).

H(n)
τ =

1

τ

n∑
j=1

−∆j +
1

3τ2

n∑
i ̸=j ̸=k ̸=i

w(x1 − x2)w(x2 − x3)w(x3 − x1)

W(3) :=
1

3
Θ(W (3)).

Theorem (R-Sohinger ’22)

Let w ∈ L∞ be real valued and even. Given p ∈ {1, 2, . . .}, we have

lim
τ→∞

TrL2(Tp) |γτ,p − γp| = 0.

Moreover
lim
τ→∞

Zτ = z.

Key Difference: We can only extend our results to L
3
2 potentials
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Relation to Previous Derivations of Gibbs Measures
The problem has been well studied in the case of a positive interaction
potential

1 Lewin-Nam-Rougerie (’15): 1D results using variational method.
Non-tranlation invariant interaction for d = 2, 3.

2 Fröhlich-Knowles-Schlein-Sohinger (’17) Bounded potentials in d = 2, 3
with modified Gibbs state. New proof of d = 1.

3 LNR (’18): 1D non-periodic subharmonic trapping potential.
4 LNR (’18): 2D smooth interaction without modified Gibbs state.
5 FKSS (’18): Time dependent problem for 1D.
6 Sohinger (’19): Results of FKSS (’17) extended to optimal w ∈ Lq.
7 FKSS (’20): Results of FKSS (’17) for d = 2, 3 without modified Gibbs

state.
8 LNR (’20): Extension to d = 3.
9 FKSS (’22): ϕ4

2 Euclidean field theory for potential with contracting range.

Ours is the first known result for an interaction potential without positivity
assumption in the two-body case. It is the first known result in the
three-body case.
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Results for three-body interactions

T.Chen-Pavlovic (’10): Shows quintic NLS is an effective equation for a
Gross-Pitaevskii range potential. Xie (’10): Similar results for p-body
interactions .

X.Chen (’12) Shows a nonlocal NLS is an effective equation for a different
three-body interaction.

Lee (’20) Rate of convergence for a particular three-body interaction similar
to X.Chen.

BEC studied by Nam-Ricaud-Triay ’22,’22
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Bounded potential proof
ρτ (A) =

ρ̃τ,1(A)
ρ̃τ,1(1)

, where ρ̃τ,z(A) := Tr(Ae−Hτ,0+zWτ )
Zτ,0

.

We expand ρτ (Θ(ξ)) and ρ(Θ(ξ)) as power series using a Duhamel

expansion: eX+ζY = eX + ζ
∫ 1

0
dt e(1−t)XY et(X+ζY )

Aξ
τ (ζ) :=

M−1∑
m=0

aξτ,mζm +Rξ
τ,M (ζ), Aξ(ζ) :=

M−1∑
m=0

aξmζm +Rξ
M (ζ),

where

aξτ,m :=
(−1)m

Zτ,0
Tr

(∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tm−1

0

dtm Θτ (ξ)e
−(1−t1)Hτ,0Wτ

× e−(t1−t2)Hτ,0Wτe
−(t2−t3)Hτ,0 . . . e−(tm−1−tm)Hτ,0Wτe

−tmHτ,0f (Nτ )

)
,

Rξ
τ,M (ζ) :=

(−ζ)M

Zτ,0
Tr

(∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tM−1

0

dtM Θτ (ξ)e
−(1−t1)Hτ,0

×Wτe
−(t1−t2)Hτ,0 . . . . . . e−(tM−1−tM )Hτ,0Wτe

−tM (Hτ,0+ζWτ )f (Nτ )

)
.
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Bounded potential proof II

Need to prove
1 The explicit terms satisfy sufficient bounds
2 We can rewrite the remainder terms using the explicit terms
3 We get convergence of the quantum explicit terms to the classical ones
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Bounds on the explicit terms

aξτ,m :=
(−1)m

Zτ,0
Tr

(∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tm−1

0

dtm Θτ (ξ)e
−(1−t1)Hτ,0Wτ

× e−(t1−t2)Hτ,0Wτe
−(t2−t3)Hτ,0 . . . e−(tm−1−tm)Hτ,0Wτe

−tmHτ,0f (Nτ )

)
.

Notice: Wτ is not in the exponential

Notice: Sum of the times in the exponential is 1

Both Θτ (ξ) and Wτ grow like Nτ

Idea: Apply Hölder’s inequality. Sum of exponents is 1, giving supremum
norms on the Θτ (ξ) and Wτ terms and a Tr(e−Hτ,0) =: Zτ,0∫ 1

0
dt1

∫ t1
0

dt2 . . .
∫ tm−1

0
dtm = 1

m!
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Remainder term

Rξ
τ,M (ζ) :=

(−ζ)M

Zτ,0
Tr

(∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tM−1

0

dtM Θτ (ξ)e
−(1−t1)Hτ,0

×Wτe
−(t1−t2)Hτ,0 . . . . . . e−(tM−1−tM )Hτ,0Wτe

−tM (Hτ,0+ζWτ )f (Nτ )

)
.

Feynman-Kac: et(∆−V )(x; x̃) =
∫
Wt

x,x̃(dω)e
−

∫ t
0
ds V (ω(s))

We use the Feynman-Kac formula to rewrite remainder term using the
explicit term

Feynman-Kac gives us a formula for e−tM (Hτ,0+ζWτ )

We thus get analytic power series for ρτ and ρ
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Key to getting convergence is proving bounds on the untruncated explicit
terms

aξτ,m :=
(−1)m

Zτ,0
Tr

(∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tm−1

0

dtm Θτ (ξ)e
−(1−t1)Hτ,0Wτ

× e−(t1−t2)Hτ,0Wτe
−(t2−t3)Hτ,0 . . . e−(tm−1−tm)Hτ,0Wτe

−tmHτ,0

)
.

By rearranging, we need to estimate a something of the form of

1

Zτ,0

∫
dx1 . . . dxm+p dy1 . . . dym+p Tr

( m∏
i=1

(φ∗
τ (xi)φ

∗
τ (yi)φτ (xi)φτ (yi))

×
p∏

i=1

φ∗
τ (xm+i)

p∏
i=1

φτ (ym+i)e
−Hτ,0

)
Idea: φ∗

τ and φτ heuristically act like φ and φ respectively, and the trace is
heuristically like an expectation −→ Wick’s theorem
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Wick’s theorem

Theorem (Classical Wick’s theorem)

Given suitable g, we let φ(g) := ⟨g, φ⟩ and φ(g) := ⟨φ, g⟩. Furthermore, we let
(φ)∗(g) denote either φ(g) or φ(g). Then, given N ≥ 0 and

g1, . . . , gN ∈ H− 1
2+ε, we have

Eµ

[
N∏
i=1

(φ(gi))
∗i

]
=

∑
Π∈M(n)

∏
(i,j)∈Π

Eµ

[
(φ(gi))

∗i (φ(gj))
∗j
]
,

where the sum is taken over all complete pairings of {1, . . . , n}, and where edges
of Π are denoted by (i, j) with i < j.

Since φ has a random Fourier series consisting only of Gaussians, we only
recover the “diagonal” terms in the product.
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Wick’s theorem in the quantum setting

A quantum analogue of Wick’s theorem allows us to look at pairings of the
following graphs
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Time Dependent Problem

We introduce time evolution

ΨtΘ(ξ) :=

∫
dx1 . . . dxp dy1 . . . dyp ξ(x1, . . . , xp; y1, . . . , yp)

× Stφ(x1) . . . Stφ(xp)Stφ(y1) . . . Stφ(yp) ,

Ψt
τA := eitτHτA e−itτHτ .

Theorem (R-Sohinger ’22,’23)

Let w be bounded and even. Let m ∈ {1, 2, . . .}, p1, . . . , pm ∈ {1, 2, . . .},
ξ1 ∈ L(h(p1)), . . . , ξm ∈ L(h(pm)), and t1, . . . , tm ∈ R be given. Then

lim
τ→∞

ρετ (Ψ
t1
τ Θτ (ξ1) . . .Ψ

tm
τ Θτ (ξm)) = ρ(Ψt1Θ(ξ1) . . .Ψ

tmΘ(ξm)) .

Use Schwinger-Dyson expansion in bounded case. Expand to unbounded
using a diagonal argument
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